Изменения
→Краткое содержание предыдущего семестра
*Метрическое пространство называется '''полным''', если любая фундаментальная последовательность в нём сходится к некоторому элементу этого пространства.
*'''Банаховым пространством''' (''B-пространством'') называется нормированное линейное пространство , полное по метрике, порождённой нормой.
*'''Пространство непрерывных функций''' — линейное нормированное пространство, элементами которого являются непрерывные на отрезке <tex>[a,b]</tex> функции (обычно обозначается <tex>{\mathrm C}[a,b]</tex>). '''Норма''' в этом пространстве определяется следующим образом: <tex>||x||_{{\mathbf C}[a,b]}=\max_{t\in [a,b]}|x(t)|</tex>
* '''Ядром''' линейного отображения <tex>f\colon A\to B</tex> называются подмножество <tex>A</tex>, которое отображается в нуль: <tex>\mbox{Ker}\,f = \{ x\in A\mid f(x) = 0 \}</tex>. Ядро линейного отображения образует подпространство в линейном пространстве <tex>A</tex>.
*Пусть <tex>A</tex> — оператор, действующий в банаховом пространстве <tex>E</tex>. Число λ называется '''регулярным''' для оператора <tex>A</tex>, если оператор <tex>R(\lambda)=(A - \lambda I)^{-1}</tex>, называемый '''резольвентой''' оператора <tex>A</tex>, определён на всём <tex>E</tex> и непрерывен. Множество регулярных значений оператора <tex>A</tex> называется '''резольвентным множеством''' этого оператора, а дополнение резольвентного множества — '''спектром''' этого оператора.
==Билеты==