Изменения
→Конечно порожденные группы
== Конечно порожденные группы ==
{{Определение|definition=
Пусть <tex>S</tex> - подмножество элементов группы <tex>G</tex>. Обозначим через <tex>\langle S\rangle</tex> наименьшую подгруппу, содержащую <tex>S</tex>. Ею является множество всех возможных произведений элементов <tex>S</tex> и их обратных.
Если <tex>\langle S\rangle = G</tex>, то говорят, что <tex>S</tex> является '''системой образующих''' для <tex>G</tex>. <tex>G</tex> называется '''конечно порожденной''', если у нее есть конечная система образующих.
}}
== Циклические группы ==