322
правки
Изменения
→Теорема Сэвича
Для любой <tex>f(n) \ge \log n </tex> справедливо: <tex>\mathrm{NSPACE}(f(n)) \subseteq \mathrm{DSPACE}(f(n)^2)</tex>. <br>
То есть, если недетерминированная машина Тьюринга может решить проблему , используя <tex>f(n)</tex> памяти, то существует детерминированная машина Тьюринга, которая решает эту же проблему, используя не больше, чем <tex>f(n)^2</tex> памяти.
|proof =
Рассмотрим машину Тьюринга с входной и рабочей лентой. Ее конфигурацию <tex>I</tex> можно закодировать так: закодировать позицию и содержание рабочей ленты (займет <tex>O(\log (f(n)))+O(f(n))</tex> памяти), позицию входной ленты (займет <tex>O(\log n)</tex> памяти).