Изменения

Перейти к: навигация, поиск
м
NL-полнота
Докажем, что <tex>CONN \in \mathrm{NL}</tex>.
Для доказательства необходимо предъявить алгоритм для недетерминированной машины Тьюринга, который использует конечное число переменных, каждая из которых занимает <tex> O(\log n) </tex> памяти, где <tex> n </tex> - размер входа для задачи и за время порядка <tex> O(poly(n)) </tex> решает эту задачу.
Алгоритм
Необходимо по данной задаче из <tex>\mathrm{NL}</tex> построить тройку <tex> \langle G, s, t \rangle </tex>, решение задачи <tex>CONN</tex> для которой будет эквивалентно решению данной задачи.
Любая машина Тьюринга, которая принимает некоторый язык <tex>\mathrm{L}</tex> из <tex>\mathrm{NL}</tex>, использует не более чем логарифмическое количество ячеек на рабочей ленте, и таким образом возможных мгновенных описаний этой машины Тьюринга <tex> O(poly(n)) </tex>. Каждому возможному мгновенному описанию машины Тьюринга будет соответствовать некоторая вершина в <tex> G </tex>, а каждому переходу из этого описания в другое (которых в недетерминированной машине Тьюринга конечное число) {{---}} ребро в графе <tex> G </tex>. За вершину <tex> s </tex> принимается вершина, соответствующая начальному состоянию машины, а из каждой вершины, соответствующей некоторому допускающему состоянию, добавляется переход в выделенную вершину <tex> t </tex>.
Очевидно, что для любого слова из языка <tex>\mathrm{L}</tex>, то есть принимаемого данной машиной Тьюринга, будет существовать путь из <tex> s </tex> в <tex> t </tex> в построенном графе <tex> G </tex>. А если для некоторого слова не из <tex>\mathrm{L}</tex> в <tex> G </tex> существует путь из <tex> s </tex> в <tex> t </tex>, то он соответствует некоторой корректной последовательности переходов в изначальной машине, таким образом слово должно было приниматься этой недетерминированной машиной.
Такое построение графа <tex> G </tex> по данной машине Тьюринга можно выполнить с использованием конечного числа переменных, которые будут перебирать всевозможные мгновенные состояния машины (их <tex> O(poly(n)) </tex>, потому переменная, перебирающая его занимает <tex> O(\log n) </tex> памяти), переходы из него и проверка возможности перехода.

Навигация