Изменения

Перейти к: навигация, поиск

Лемма о соотношении coNP и IP

19 байт добавлено, 16:40, 4 июня 2012
Нет описания правки
Докажем теперь, что построенный таким образом ''Verifier'' — корректный. Для этого нужно доказать следующие утверждения:
# Построенный ''Verifier'' - вероятностная машина Тьюринга, совершающая не более полинома от длины входа действий.
# <tex>\langle \varphi, k \rangle \in \mathrm{\#SAT } \Rightarrow \exists \mathit{Prover} : P(\mathit{Verifier^{Prover}}(\langle \varphi, k \rangle)=1) \ge 2/3</tex>.# <tex>\langle \varphi, k \rangle \notin \mathrm{\#SAT } \Rightarrow \forall \mathit{Prover} : P(\mathit{Verifier^{Prover}}(\langle \varphi, k \rangle)=1) \le 1/3</tex>.
Докажем эти утверждения.
:<tex>\ldots</tex>
:'''Шаг i'''
:Заметим, что если на каком-то шаге <tex>A_{i-1}(r_i) = \tilde{A}_{i-1}(r_i)</tex>, то начиная со следующего шага ''Prover'' может посылать истинные значения правильные <tex>A_j</tex> и в итоге ''Verifier'' вернёт '''true'''.
:Для некоторого случайно выбранного <tex>r_i</tex> вероятность того, что <tex>A_{i-1}(r_i) = \tilde{A}_{i-1}(r_i)</tex>, то есть <tex>r_i</tex> — корень полинома <tex>(A_{i-1} - \tilde{A}_{i-1})(r_i)</tex>, имеющего степень не больше <tex>d</tex>, не превосходит <tex>\frac{d}{p}</tex>.
:<tex>\ldots</tex>
:'''Шаг m'''
:Так как на последнем шаге ''Verifier'' сверяет истинное значение с полученным от ''Prover''значение с непосредственно вычисленным, слово будет допущено только в том случае, когда ''Prover'' смог прислать верное значение, что в свою очередь возможно лишь если на одном из предыдущих шагов был верно угадан корень полинома.
:
:Посчитаем Вычислим вероятность того, что ''Verifier'' хотя бы раз угадал кореньбыл угадан.
:<tex>P(\mathit{Verifier^{Prover}}(\langle \varphi, k \rangle)=1) = 1 - (1 - \frac d p)^m \le 1 - (1 - \frac d {3dm})^m \le \frac 1 3</tex>.

Навигация