2. <tex>\mathrm{ZPP_1} \subset \mathrm{ZPP}</tex>.
Будем запускать программу <tex>p</tex> для <tex>\mathrm{ZPP_1}</tex>, пока не получим ответ, отличный от <tex>?</tex>. Математическое ожидание количества запусков <tex>p</tex> не превышает <tex>\sum\limits_{k = 0}^\infty \frac{k}{2^k} = 2</tex>. Значит, новая программа будет в среднем работать за полиномиальное время, что и требуется для класса <tex>\mathrm{ZPP}</tex>.
}}
{{Теорема
|statement = <tex>\mathrm{P} \subset \mathrm{ZPP} = \mathrm{RP} \cap \mathrm{coRP}</tex>.
|proof =
Утверждение <tex>\mathrm{P} \subset \mathrm{ZPP}</tex> является очевидным, так как программы, удовлетворяющие ограничениям <tex>\mathrm{P}</tex>, также удовлетворяют ограничениям класса <tex>\mathrm{ZPP}</tex>.
Докажем, что <tex>\mathrm{ZPP} = \mathrm{RP} \cap \mathrm{coRP}</tex>.
Для этого, покажем, что <tex>\mathrm{ZPP}_1 = \mathrm{RP} \cap \mathrm{coRP}</tex>. Тогда из <tex>\mathrm{ZPP} = \mathrm{ZPP}_1</tex> будет следовать требуемое.
1) <tex>\mathrm{ZPP}_1 \subset \mathrm{RP}</tex>. Достаточно вместо <tex>?</tex> возвращать <tex>0</tex>.
2) <tex>\mathrm{ZPP}_1 \subset\mathrm{coRP}</tex>. Достаточно вместо <tex>?</tex> возвращать <tex>1</tex>.
3) <tex>\mathrm{ZPP}_1 \supset \mathrm{RP} \cap \mathrm{coRP}</tex>.
Пусть программа <tex>p_1</tex> удовлетворяет ограничениям <tex>\mathrm{RP}</tex> и ошибается на словах из языка <tex>L</tex> с вероятностью не более <tex>1/2</tex>, а программа <tex>p_2</tex> удовлетворяет ограничениям <tex>\mathrm{coRP}</tex> и ошибается на словах не из языка <tex>L</tex> с аналогичной вероятностью. Построим программу <tex>q</tex> для <tex>\mathrm{ZPP}_1</tex>:
<tex>q</tex>(x)
'''if''' <tex>p_2</tex>(x) = 0
'''return''' 0
'''if''' <tex>p_1</tex>(x) = 1
'''return''' 1
'''return''' ?
Вероятность вывести <tex>?</tex> есть <tex>\operatorname{P}(p_2(x) = 1, p_1(x) = 0) \le 1/2</tex>.
}}
== Литература ==
* [http://www.cs.princeton.edu/theory/complexity/ Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern Approach]