Изменения
→Время работы
Работа с максимальным потоком в расширенной сети занимает <tex>O (m n^3)</tex> шагов, проверка может быть сделана с такой же скоростью. Для решения <tex>Q|pmtn; r_{i}|L_{max}</tex> мы используем бинарный поиск, получается алгоритм со сложностью <tex>O (mn^3(log(n) + log (\max\limits_{i=1}^{n} p_i)) </tex>, потому как <tex>L_{max}</tex>, ограничен <tex>n \max\limits_{i=1}^{n}p_i</tex>, при <tex>s_1 = 1</tex>.
Задача <tex>Q | pmtn; r_i | C_{max}</tex> представляет собой частный случай <tex>Q | pmtn; r_i | L_{max}</tex>, и может быть решена более эффективно. Labetoulle, Lawler, Lenstra, и Rinnooy Kan разработали алгоритм работающий за <tex> O(n log(n) + mn) </tex> специально для этого случая.
{{Утверждение
|statement= Задача <tex>Q | pmtn | L_{max}</tex> может быть решена за <tex> O(n log(n) + mn) </tex> шагов.