Изменения

Перейти к: навигация, поиск

Лемма Бернсайда, задача о числе ожерелий

1405 байт добавлено, 03:35, 11 июля 2010
Нет описания правки
Пусть есть <tex>n</tex> бусинок <tex>m</tex> разных сортов, <tex>n_i</tex> назовем количество бусинок <tex>i</tex>ого цвета<tex>(i \in [1;m])</tex>. Найти число ожерелий которые можно составить из этих бусинок. Ожерелья полученные поворотом друг из друга поворотом или отражением считаются одним ожерельем.
===='''решение:'''====
Эта задача равносильна следующей задаче: сколькими различными способами можно раскрасить вершины правильного <tex>n</tex>угольника вершины которого окрашены в цветов, а количество вершин каждого цвета равно <tex>n_i</tex>. Две расскраски считаются разными, если из одной нельзя получить другую с помощью симметрии или вращения.
Два многоугольника будут считаться разными, если из одного невозможно получить другой какой-либо перестановкой <tex>d' \in D'</tex> (они содержаться на разных орбитах группы <tex>D'</tex> действующей на множестве <tex>M</tex>). Поэтому для получения количества различных раскрасок вершин <tex>n</tex>угольника достаточно найти количество орбит группы <tex>D'</tex> на множестве <tex>M</tex>. По лемме Бернсайда, для этого нужно посчитать число неподвижных точек каждой перестановки <tex> d' \in D'</tex>.
 '''Рассмотрим повороты:''' пусть <tex>k</tex> — общий делитель <tex>n_i</tex>ых<tex>(i \in [1..m]) \Rightarrow</tex> поворот <tex>a_1</tex> на угол <tex>\frac { 2\pi } { k }</tex> оставит неподвижными ожерелья из <tex>k</tex> одинаковых кусков длинны <tex>\frac {n} {k}</tex>. Каждый кусок состоит из <tex>\frac {n_i} { k } </tex> бусен <tex>i</tex>ого цвета, поэтому число неподвижных точек для поворота будет равно количеству способов расставить бусины на <tex>\frac {n} {k}</tex> местах. рассмотрим поворот <tex> a_i</tex> на угол <tex>\frac {2i\pi} {k}</tex>, где <tex> i \in [1..k]</tex>. Количество его неподвижных точек равно количеству неподвижных точек <tex>a_1</tex>, если <tex> i</tex> взаимно просто с <tex>k</tex>. Количество взаимно простых с <tex>k</tex>(не превосходящих <tex>k</tex>) — является функцией Эйлера <tex>\phi(k)</tex>.  '''рассмотрим симметрии относительно осей:''' ''1 случай:'' <tex>n</tex> — нечетно. ''2 случай:'' <tex>n</tex> — четно.
[[Категория:Теория групп]]
Анонимный участник

Навигация