Изменения

Перейти к: навигация, поиск

Лемма Бернсайда, задача о числе ожерелий

2173 байта добавлено, 21:58, 10 августа 2010
Нет описания правки
{{Требует доработки
|item1=(исправлено)Надо решить задачу о числе ожерелий!
}}
рассмотрим поворот <tex> a_i</tex> на угол <tex>\frac {2i\pi} {k}</tex>, где <tex> i \in [1..k]</tex>. Количество его неподвижных точек равно количеству неподвижных точек <tex>a_1</tex>, если <tex> i</tex> взаимно просто с <tex>k</tex>. Количество взаимно простых с <tex>k</tex>(не превосходящих <tex>k</tex>) — является функцией Эйлера <tex>\phi(k)</tex>. Пусть <tex>S</tex> — сумма по всем поворотам, тогда <tex>S= \sum_{k} \phi(k) \cdot P(\frac {n_1} { k }, \frac {n_2} { k }, ..., \frac {n_m} { k })</tex>, где k пробегает множество общих делителей <tex>n_1, n_2, ..., n_m</tex>.
 
'''рассмотрим симметрии относительно осей:'''
''a)Пусть'' <tex>n_1, n_2</tex> ''— не четные'', <tex>n_i (i \in [3..m])</tex> — четные, <tex>d</tex> — симметрия относительно некой оси, проходящей через противоположные вершины. Тогда неподвижными точками для <tex>d'</tex> будут ожерелья, симметричные относительно оси, проходящей через вершины <tex>n_1</tex> и <tex>n_2</tex> сортов. По одну сторону находятся от оси находятся <tex>\frac {n-2} { 2 }</tex> бусин, где <tex>\frac {n_1-1} { 2 },</tex> бусин <tex>n_1</tex> цвета, <tex>\frac {n_2-1} { 2 },</tex> бусин <tex>n_2</tex> цвета <tex>\frac {n_i} { 2 },</tex> бусин <tex>[3..m]</tex> цвета. Бусины <tex>n_1</tex> и <tex>n_2</tex> цвета можно поменять местами <tex>\Rightarrow</tex> количество неподвижных точек <tex>t(d')=2P(\frac {n_1-1} { 2 }, \frac {n_2-1} { 2 }, ..., \frac {n_m} { 2 })</tex>. Таких симметрий <tex>\frac {n} {2} \Rightarrow S'=m \cdot P([\frac {n_1} { 2 }], [\frac {n_2} { 2 }], ..., [\frac {n_m} { 2 }])</tex>.
''б)Пусть все'' <tex>n_i</tex> — ''четные''.Если <tex>d</tex> — симметрия относительно оси проходящей через 2 вершины, то неподвижными точками для <tex>d'</tex> будут симметричные ожерелья, у которых <tex>2</tex> бусины <tex>n_i (i \in [1..m])</tex> цвета расположены на данной оси. Их количество <tex>t(d')=P(\frac {n_1-2} { 2 }, \frac {n_2} { 2 }, ..., \frac {n_m} { 2 })+P(\frac {n_1} { 2 }, \frac {n_2-2} { 2 }, \frac {n_3} { 2 }, ..., \frac {n_m} { 2 })</tex><tex>+ ...+</tex><tex>P(\frac {n_1} { 2 }, ..., \frac {n_{m-1}} { 2 }, ..., \frac {n_m-2} { 2 })=P(\frac {n_1} { 2 }, \frac {n_2} { 2 }, ..., \frac {n_m} { 2 })</tex>. Таких симметрий <tex> \frac {m} {2}</tex>. Если <tex>d</tex> — симметрия относительно оси, проходящей между бусинами, то количество неподвижных точек равно <tex>t(d')=P(\frac {n_1} { 2 }, \frac {n_2} { 2 }, ..., \frac {n_m} { 2 })</tex>. Таких симметрий также <tex> \frac {m} {2}</tex>. Поэтому <tex>S'=m \cdot P(\frac {n_1} { 2 }, \frac {n_2} { 2 }, ..., \frac {n_m} { 2 })=m \cdot P([\frac {n_1} { 2 }], [\frac {n_2} { 2 }], ..., [\frac {n_m} { 2 }])</tex>.  '''Итак:''' Во всех случаях получились одинаковые формулы для сумм неподвижных точек по всем отражениям<tex>(S')</tex>. По лемме Бернсайда <tex>t(D')= \frac {1} {2n} \cdot (S+S')= \frac {1} {2m} \cdot \sum_{k} \phi(k) \cdot P(\frac {n_1} { k }, \frac {n_2} { k }, ..., \frac {n_m} { k })+ \frac {1} {2} \cdot P([\frac {n_1} { 2 }], [\frac {n_2} { 2 }], ..., [\frac {n_m} { 2 }]) </tex>. Это и будет количеством ожерелий. Если среди всех <tex>n_i (i \in [1..m])</tex> более 2 нечетных, то нет симметрий <tex>\Rightarrow S'=0, \, t(D')= \frac {1} {2m} \cdot \sum_{k} \phi(k) \cdot P(\frac {n_1} { k }, \frac {n_2} { k }, ..., \frac {n_m} { k })</tex>.
[[Категория:Теория групп]]
Анонимный участник

Навигация