223
правки
Изменения
м
Нет описания правки
}}
Колмогоров построил пример суммируемой <tex> 2\pi </tex>-периодической функции, ряд Фурье которой расходится в каждой точке. Отсюда возникает круг проблем, которые связаны с поиском условий, гарантирующих сходимость ряда Фурье, сходящегося в каждой индивидуальной точке. Это тем более важно, учитывая, что существуют непрерывные <tex> L_p </tex>-функции, ряды которых расходятся в бесконечном числе точек.
Карлсон доказал, что для функций из <tex> L_2 </tex> ряд Фурье сходится почти всюду.