Изменения

Перейти к: навигация, поиск

Теорема Лузина-Данжуа

8 байт убрано, 15:24, 26 июня 2012
Нет описания правки
Обратное в общем случае неверно, тригонометрический ряд может абсолютно сходиться в бесконечном числе точек, но при этом числовой будет расходиться.
Рассмотрим, например, <tex> \sum\limits_{n=1}^{\infty} \sin (\pi n! x), x_k = \frac{\pi}{k!} </tex>, тогда при <tex> n \ge k: \sin(\pi n! x_k) = \sin(\pi n (n - 1) \dots (k + 1)) = 0 </tex>, то есть, ряд абсолютно сходится. Однако, <tex> b_{n!} = 1 </tex>, и ряд из коэффициентов расходится.
Однако, есть важная теорема:
403
правки

Навигация