1632
правки
Изменения
м
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит Случайная величина <tex>\xi</tex> имеет '''биномиальное распределение''' (англ. ''binomial distribution'') с одной параметрами <tex>n \in \mathbb N</tex> и той же вероятностью <tex> p \in \mathbb (0, 1)</tex> и пишут: <tex> \xi \in \mathbb B_{n, а неудача — p}</tex> если <tex> \xi</tex> принимает значения <tex>k = 0, 1, \ldots ,n</tex> с вероятностью q вероятностями <tex >P(\xi = k) = </tex><tex > \dbinom{n}{k} \cdot p^k \cdot (1 − - p)^{n - k} </tex> .
Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.{{Лемма|id=th1P(<tex>v_{10}</tex> = 4) |statement= Вероятность того, что первый успех произойдёт в испытании с номером <tex>k \binom{10}{4}</tex> <tex> in \genfrac{}{}{}{0}mathbb N = {1}{, 2, 3, \ldots}^ {4} </tex> равна <tex> P(r = k) = p \genfrac{}{}{}{0}{1}{2}cdot q^ {10 k - 41} </tex> |proof=Вероятность первым <tex>~\approx ~ 0{.}205 k - 1 </tex> P(<tex>v_ испытаниям завершиться неудачей, а последнему {{10---}} успехом, равна </tex> P(r = 5k) = <tex>p \binom{10}{5}</tex> <tex> \genfrac{}{}{}{0}cdot q^{k - 1}{2}^ {5} </tex> <tex> \genfrac{}{}{}{0}{1}{2}^ {10 - 5}</tex> <tex>~\approx ~ 0{.}246 </tex>
P(<tex>v_{10}</tex> = 6) = <tex>\binom{10}{6}</tex> <tex> \genfrac{}{}{}{0}{1}{2}^ {6} </tex> <tex> \genfrac{}{}{}{0}{1}{2}^ {10 - 6} </tex> <tex>~\approx ~ 0{.}205 </tex>
Сложим вероятности несовместных событий:
P(4)(<tex> \le </tex><tex> v_{10}</tex> <tex> \le </tex>6) = P(<tex> v_{10} </tex> = 4) + P(<tex> v_{10} </tex> = 5) + P(<tex> v_{10} </tex> = 6) <tex> ~\approx ~ 0{.}656 </tex>
Вероятность того, что первый успех произойдёт в испытании с номером Пусть <tex> P(r = k) = p \cdot q^{k - 1} </tex> для любого <tex>k \in \mathbb N = {1, 2, 3, </tex>. . .}, равна Тогда для любых неотрицательных целых <tex>n </tex> и <tex>k</tex> имеет место равенство: <tex> P(r = > n + k| r > n) = pq^ {P(r > k - 1} ) </tex>
Вероятность первым По определению условной вероятности,<tex> P(r > n + k | r > n) = </tex> − <tex> \dfrac{P(r > n + k, r > n)}{P(r > n)} = \dfrac{P(r > n + k)}{P(r > n)} </tex> <tex>\left(1 \right)</tex>Последнее равенство верно в силу того, что событие <tex> {r > n + k} </tex> влечёт событие <tex>{r > n}</tex>, поэтому их пересечением будет событие <tex> {r > n + k}</tex>. Найдём для целого <tex> m \geqslant 0</tex> испытаниям завершиться неудачейвероятность <tex> P(r > m)</tex> : событие <tex> r > m </tex> означает, а последнему — успехомчто в схеме Бернулли первые <tex>m</tex> испытаний завершились «неудачами», то есть его вероятность равна <tex> q^{m}</tex>. Возвращаясь к формуле <tex>\left(1\right)</tex> получаем, что эта [[Дискретная случайная величина | случайная величина]] равна <tex> P(r > n + k | r > n) = </tex> <tex> \dfrac{P(r > n + k, r > n) }{P(r > n)} = \dfrac{q^{n + k}} {q^{n}} = pq</tex> <tex> q^{k - 1} = P(r > k)</tex>.
Набор вероятностей <tex> pq^ {k - 1} </tex>, где k принимает любые значения из множества натуральных чисел, называется ''геометрическим распределением'' вероятностей. Геометрическое распределение вероятностей обладает интересным свойством ''отсутствия последействия'', означающим «нестарение» устройства, время жизни которого подчинено геометрическому распределению.
Пусть Обозначим через <tex> P(r = kn_{1}, \ldots , n_{m}) = pq^</tex> вероятность того, что в <tex>n</tex> независимых испытаниях первый исход случится <tex> n_{k - 1} </tex> для любого раз, второй исход {{---}} <tex> k \in \mathbb N n_{2}</tex>. Тогда для любых неотрицательных целых n раз, и k имеет место равенствотак далее, наконец, <tex>m</tex>-й исход {{---}} <tex>n_{m}</tex> раз тогда верна формула: <tex> P(r n_{1}, \ldots , n_{m}) = </tex> n + k | r <tex> \dfrac{n) = P(r > k) !}{n_{1}! \cdot n_{2}! \cdot\ldots \cdot n_{m}!} \cdot {p_{1}}^{n_{1}} \cdot \ldots \cdot {p_{m}}^{n_{m}}</tex>
По определению условной вероятностиРассмотрим один элементарный исход,благоприятствующий выпадению <tex> P(r > n + k | r > n) = \genfrac{}{}{}{0}{P(r > n + k, r > n)}n_{P(r > n)} = \genfrac{}{}{}{0}{P(r > n + k)}{P(r > n)1} </tex> (9)Последнее равенство верно в силу тогоединиц, что событие <tex> n_{r > n + k2} </tex> влечёт событие двоек, и так далее.Это результат <tex>{r > n}</tex>экспериментов, поэтому их пересечением будет событие когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей <tex> p_{n_{1}} \ldots p_{n_{r > n + km}}</tex>. Найдём для целого Остальные благоприятные исходы отличаются лишь расположением чисел <tex> 1, 2, \ldots , m \ge </tex> 0 вероятность на <tex> P(r n</tex> m)местах. Число таких исходов равно числу способов расположить на <tex>n</tex> : событие местах <tex> r > m n_{1}</tex> означаетединиц,что в схеме Бернулли первые m испытаний завершились «неудачами», то есть его вероятность равна <tex> q^n_{m2}</tex>. Возвращаясь к (9)двоек, получим и так далее Это число равно<tex> P(r > n + k | r > n) = \genfracdbinom{n}{n_1}\cdot\dbinom{n - n_1 - n_2}{0n_2}\cdot \dbinom{P(r > n + k, r > n)- n_1 - n_2- n_3}{P(r > n)n_3} = \genfraccdot\ldots \cdot \dbinom{}n - n_1 - n_2 - \ldots - n_{m -1}{}{0n_m}{q^= \dfrac {n + k}!} {q^n_{n1}! \cdot n_{2} = q^! \cdot \ldots \cdot n_{km}!} = P(r > k)</tex>.
rollbackEdits.php mass rollback
{{Определение |definition='''Распределение Схемой Бернулли в теории вероятностей и математической статистике''' — (англ. ''Bernoulli scheme'') называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода {{---}} «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью дискретное распределение вероятностей<tex> p \in (0, моделирующее случайный эксперимент произвольной природы1)</tex> , когда заранее известна вероятность успеха или неудачиа неудача {{---}} с вероятностью <tex> q = 1 - p </tex>.}} == Распределение Бернулли== {{Определение |definition=='''Распределение Бернулли''' (англ. ''Bernoulli distribution'') {{---}} описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех".}}[[Дискретная случайная величина | Случайная величина]] <tex>\xi</tex> с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью <tex>p</tex> успеха : ни одного успеха или один успех. Функция распределения <tex> \xi</tex> имеет вид
<tex>
F_{\xi}(x) = P(\xi < x) \begin{cases}
0, & x\leqslant 0 \\
1 - p, & 0 < x \leqslant 1\\
1, & x > 1
\end{cases}
</tex>
[[Файл:Распределение Бернулли.jpg]]
== Биномиальное распределение ==
{{Определение
|definition=
}}
Случайная величина с таким распределением имеет смысл числа успехов в <tex> n </tex> испытаниях схемы Бернулли с вероятностью успеха <tex>p</tex>.
Таблица распределения <tex> \xi </tex> имеет вид
{| class="wikitable" style ="text-align:center"
|-
|<tex>\xi </tex>
| 0
| 1
| <tex>\ldots</tex>
| <tex>k</tex>
| <tex>\ldots</tex>
| <tex>n</tex>
|-
| <tex>P</tex>
| <tex>(1 - p) ^ n </tex>
| <tex>n \cdot p \cdot (1 - p)^{n - 1}</tex>
| <tex>\ldots</tex>
| <tex>\dbinom{n}{k} \cdot p^k \cdot (1 - p)^{n - k} </tex>
| <tex>\ldots</tex>
| <tex> p^n </tex>
|}
== Формула Бернулли ==
Обозначим через <tex> v_{n} </tex> число успехов, случившихся в <tex> n</tex> испытаниях схемы Бернулли. Эта случайная величина может принимать целые значения от <tex>0</tex> до <tex>n</tex> в зависимости от результатов испытаний. Например, если все <tex>n </tex> испытаний завершились неудачей, то величина <tex> v_{n} </tex> равна нулю.
{{Теорема
|id=th1
|statement=
Для любого <tex >k = 0, 1, . . . \ldots , n </tex> вероятность получить в <tex>n </tex> испытаниях <tex>k </tex> успехов равна P(<tex>P(v_{n} = k ) = </tex> = k) = <texdpi="145">\binomdbinom{n}{k}</tex> <tex> \cdot p ^ {k} </tex> <tex> \cdot q ^ {n - k}</tex>
|proof=
Событие A = {<tex> \{A = v_{n} = k\} </tex> = k} означает, что в <tex>n </tex> испытаниях схемы Бернулли произошло ровно <tex>k </tex> успехов. Рассмотрим один элементарный исход из события <tex>A</tex>: когда первые <tex>k </tex> испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна <tex> p ^ {k} </tex> <tex> \cdot (1-p) ^ {n - k} </tex> Другие элементарные исходы из события <tex>A </tex> отличаются лишь расположением <tex>k </tex> успехов на <tex>n </tex> местах. Есть ровно <texdpi="145">\binomdbinom{n}{k}</tex> cпособов способов расположить <tex>k </tex> успехов на <tex>n </tex> местах. Поэтому событие <tex>A </tex> состоит из <texdpi="145">\binomdbinom{n}{k}</tex> элементарных исходов, вероятность каждого из которых равна <tex> p ^ {k} </tex> <tex> \cdot q ^ {n - k}</tex>Набор вероятностей в теореме называется биномиальным распределением вероятностей.
}}
== Пример Геометрическое распределение ==Правильная монета подбрасывается 10 раз{{Определение |definition='''Геометрическое распределение''' (англ. Найти вероятность того''geometric distribution'') {{---}} распределение дискретной случайной величины, что герб выпадет от 4 равной количеству испытаний случайного эксперимента до 6 разнаблюдения первого успеха.}}
{{Теорема
|id=th1
|statement=
|proof=
}}
== Обобщение (полиномиальная схема) ==
Обычная формула Бернулли применима на случай, когда при каждом испытании возможен один из двух исходов.
Рассмотрим случай, когда в одном испытании возможны <tex> m</tex> исходов: <tex>1, 2, \ldots , m,</tex> и <tex>i</tex>-й исход в одном испытании случается
с вероятностью <tex> p_{i}</tex> , где <tex>p_{1} + \ldots + p_{m} = 1</tex>.
{{Теорема
|id=th1
|statement=
|proof=
}}
== Пример Примеры ====== Правильная монета ====Правильная монета подбрасывается <tex>10</tex> раз. Найти вероятность того, что герб выпадет от <tex>4</tex> до <tex>6</tex> раз. Вычислим отдельно вероятности получить <tex>4, 5</tex> и <tex>6</tex> гербов после десяти подбрасываний монеты. <tex >P(v_{10} = 4) =</tex> <tex> \dbinom{10}{4} \cdot\left(\dfrac{1}{2}\right)^ {4} \cdot \left(\dfrac{1}{2}\right)^ {10 - 4} </tex> <tex>~\approx ~ 0{.}205 </tex> <tex >P(v_{10} = 5) = </tex> <tex>\dbinom{10}{5} \cdot \left(\dfrac{1}{2}\right)^ {5} \cdot \left(\dfrac{1}{2}\right)^ {10 - 5}</tex><tex>~\approx ~ 0{.}246 </tex> <tex >P(v_{10} = 6) =</tex> <tex> \dbinom{10}{6} \cdot \left(\dfrac{1}{2}\right)^ {6} \cdot \left(\dfrac{1}{2}\right)^ {10 - 6}</tex> <tex>~\approx ~ 0{.}205 </tex> Сложим вероятности несовместных событий:<tex>P(4 \leqslant v_{10} \leqslant 6) = P(v_{10} = 4) + P(v_{10} = 5) + P(v_{10} = 6) ~\approx ~ 0{.}656 </tex> ==== Правильная игральная кость с двумя исходами ====
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — {{---}} с чётным. Пусть событие <tex> A_{k} </tex> состоит в том, что что шесть очков впервые выпадет в испытании с номером <tex>k</tex>. По последней теоремелемме, <tex> P(A_{k}) = </tex> <tex>\genfracdfrac{1}{6} \cdot \left(\dfrac{5}{6}\right)^{0k - 1}</tex>События <tex>A , B</tex>, означающие победу первого и второго игроков соответственно, представимы в виде объединения взаимоисключающих событий:<tex> A = A_{1}\cup A_{3} \cup A_{5} \cup \ldots , B = B_{2}\cup B_{4} \cup B_{6} · \cup \ldots </tex>Вероятности этих объединений равны суммам вероятностей слагаемых: <tex > P(A) =</tex><tex> \genfracdfrac{1}{6}+ \dfrac{1}{06}\cdot \left(\dfrac{5}{6}\right)^{k - 2} + \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{4} \ldots = \dfrac{6}{11}.</tex> Теперь аналогичным образом посчитаю вероятность для события <tex>B</tex> <tex> P(B) =</tex> <tex> \dfrac{1}{6} \cdot \dfrac{5}{6} + \dfrac{1}{6} \cdot \left(\dfrac{5}{6}\right)^{3} + \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{5} \ldots = \dfrac{5}{11}. </tex> ==== Правильная игральная кость с тремя исходами ====Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы.Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани. Так как вероятности выпадения тройки и единицы равны по <tex>\dfrac{1}{6}</tex>, а вероятность третьего исхода (выпала любая другая грань) <tex>\dfrac{4}{6}</tex>, то вероятность получить десять троек, три единицы и ещё два других очка равна <tex > P(10, 3, 2) = </tex> <tex> \dfrac{15!}{10! \cdot 3! \cdot2!} \cdot \left(\dfrac{1}{6}\right)^{10} \cdot \left(\dfrac{1} {6}\right)^{3} \cdot \left(\dfrac{4}{6}\right)^{2}</tex> ==См. также== *[[Дискретная случайная величина]]*[[Математическое ожидание случайной величины]] ==Источники информации==*[https://ru.wikipedia.org/wiki/Распределение_Бернулли Википедия {{---}} Распределение Бернулли]*[https://ru.wikipedia.org/wiki/Биномиальное_распределение Википедия {{---}} Биномиальное распределение]*[https://ru.wikipedia.org/wiki/Формула_Бернулли Википедия {{---}} Формула Бернулли]*[https://ru.wikipedia.org/wiki/Геометрическое_распределение Википедия {{---}} Геометрическое распределение]*''Н.И Чернова'' Теория вероятности {{---}} Новосибирск, 2009.[[Категория: Дискретная математика и алгоритмы]][[Категория: Теория вероятности]]