Изменения

Перейти к: навигация, поиск

Методы генерации случайного сочетания

9 байт добавлено, 20:27, 10 января 2013
м
Нет описания правки
===Доказательство корректности алгоритма===
На первом шаге мы выбираем один элемент из <tex>n</tex>, на втором из <tex>n - 1</tex>, ..., на <tex>k</tex>-ом из <tex>n - k + 1</tex> То . Тогда общее число исходов получится <tex>n * (n - 1) * ... * (n - k + 1)</tex>. Это эквивалентно <tex dpi="180">{n! \over (n - k)!}</tex>. Однако заметим, что на этом шаге у нас получаются лишь размещения из <tex>n</tex> по <tex>k</tex>. Но все эти размещения можно сопоставить одному сочетанию, отсортировав их. И так как размещения равновероятны , и каждому сочетанию сопоставлено ровно <tex>k!</tex> размещений, то сочетания тоже генерируются равновероятно.
==Решение за время O(n)==
===Доказательство корректности алгоритма===
Заметим, что всего перестановок <tex>n!</tex>, но так как наш массив состоит только из 0 и 1, то перестановка только 0 или только 1 ничего в нем не меняет. Заметим, что число перестановок нулей равно <tex>(n - k)!</tex>, единиц — <tex>k!</tex>. Следовательно , всего уникальных перестановок — <tex dpi = "180">{n! \over k!(n - k)!}</tex>. Все они равновероятны, так как была сгенерирована случайная перестановка, а каждой уникальной перестановке сопоставлено ровно <tex>k!(n - k)!</tex> перестановок. Но <tex dpi="180">{n! \over k!(n - k)!}</tex> — число сочетаний из <tex>n</tex> по <tex>k</tex>. То есть каждому сочетанию сопоставляется одна уникальная перестановка. Следовательно, генерация сочетания происходит также равновероятно.
===Оценка временной сложности===
34
правки

Навигация