277
правок
Изменения
→Лемма о похожести путей, близких к данному
{{Лемма
|statement=
Пусть <tex> \gamma: [a, b] \to O </tex>. Тогда [любые два пути, мало отличающиеся от данного — похожие] <tex> \exists \delta > 0 </tex> такое, что если пути <tex> \gamma_1, \gamma_2: [a, b] \to O </tex> — «близкие» к <tex> \gamma ; * </tex>, то есть <tex> \forall t \in [a, b] \ \ | \gamma(t) - \gamma_1(t) | < \delta, \ | \gamma(t) - \gamma_2(t) | < \delta </tex>, то <tex> \gamma_1, \gamma_2 </tex> похожи.|proof=Cуществуют дробление <tex> a = t_0 < t_1 < ... < t_n = b </tex> и шары <tex> B_1, ..., B_n \subset O </tex> для <tex> \gamma </tex> <tex> \gamma[t_{k - 1}, t_{k}] </tex> — компакт в <tex> B_k </tex> <tex> \exists \delta_k > 0 : \delta_k = dist(\gamma[t_{k - 1}, t_k], \partial B_k); g(t) = dist(\gamma(t), \partial B_k) </tex> <tex> \delta := \min_{1 \le k \le n} \delta_k </tex> <tex> A_k = \{ x \in \mathbb{R}^n : \exists t \in [t_{k - 1}, t_{k}] \ \ \rho(\gamma(t), x) < \delta \} \subset B_k </tex> <tex> \forall \gamma_1, \gamma_2 </tex> — удовл. <tex> * : \gamma_1 [a, b] \subset \cup_{k = 1}^{n} A_k, \gamma_2 \subset \cup_{k = 1}^{n} A_k </tex> и <tex> (\{B_k\}, \{t_i\}) </tex> — гусеница реал. похож. путей
}}