Изменения
→Теорема о непрерывно дифференцируемых отображениях
<tex> \forall \epsilon > 0 \exists \delta > 0 : \forall x : |x - \overline{x}| < \delta </tex>
<tex> ||F'(x) - F'(\overline{x})|| < \epsilon </tex>
<tex> ||F'(x) - F'(\overline{x})|| \le \sqrt{\sum(\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\overline{x}))^2} </tex>
<tex> \forall \epsilon > 0 </tex> выберем <tex> \delta : |\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\overline{x})| < \frac{\epsilon}{\sqrt{mn}}</tex>; при <tex> |x - \overline{x}| < \delta; i = 1 \ldots n; j = 1 \ldots m </tex>