Изменения

Перейти к: навигация, поиск

Участник:Yulya3102/Матан3сем

770 байт добавлено, 21:34, 14 января 2013
Теорема о неявном отображении
1) существуют открытые <tex> P \subset \mathbb{R}^m, \ Q \subset \mathbb{R}^n, \ a \in P, \ b \in Q </tex>, и существует единственное <tex> \varphi: P \to Q, \varphi \in C^r </tex>, что <tex> \forall x \in P \ F(x, \varphi(x) ) = 0 </tex>
'''Раньше тут был забыт минус!'''2) <tex> \varphi'(x) = -[F'_y (x, \varphi(x) ) ]^{-1} \cdot F'_x(x, \varphi(x)) </tex> |proof= Пусть <tex>\Phi(x, y) = (x, F(x,y))</tex>. <tex>\Phi(a, b) = (a, 0)</tex> <tex>\Phi{'} = \begin{pmatrix} E_n & O \\ F'_x & F'_y \end{pmatrix}</tex>. <tex>\det{\Phi'} = \det{F'_y} \neq 0</tex> По теореме о локальной обратимости <tex>\exists{U(a,b)}</tex> — такая, что <tex>\Phi</tex> — диффеоморфизм в данной окрестности. Тогда существует обратное отображение <tex>\Psi(u, v) = (u, H(u, v))</tex>. Почти очевидно, что <tex>\varphi(x) = H(x, 0)</tex>. Берем производную — получаем 2): <tex>F'(x, \varphi(x)) = F'_x + F'_{y}\varphi{'} = 0</tex>
}}
54
правки

Навигация