Изменения
Нет описания правки
<tex>y_n - y'_n \to 0 \implies f(y_n - y'_n) \to 0 \implies f(y_n) - f(y'_n) \to 0
\\
\implies \lim f(y_n) = \lim f(y'_n) </tex>.
Таким образом предел не зависит от выбора <tex> y_n </tex>.
* <tex>\widetilde f (x + x') = \lim f(y_n + y'_n) = \lim f(y_n) + f(y'_n)</tex><tex> = \lim f(y_n) + \lim f(y'_n) = \widetilde f(x) + \widetilde f(x')</tex>
* сужение: покажем, что <tex>\forall y \in Y: \widetilde f(y) = f(y)</tex>, как уже показали, можем выбрать любую последовательность, сходящуюся к <tex>y</tex>, тогда возьмем последовательность, состоящую только из <tex>y</tex>, очевидно, она сходится к <tex>y</tex> и значения функционалов совпадают
* сохранение нормы: по только что доказанному свойству сужения, на <tex>\| x \| \le 1, x in Y</tex> функционал <tex>\widetilde f </tex> принимает все те значения, что и <tex>f</tex>, поэтому достаточно показать, что не найдется <tex>x: \| x \| \le 1, x \in X, x \notin Y: |\widetilde f(x)| > \|f\|</tex>. Пусть такой <tex>x</tex> нашелся со значением функционала <tex>\widetilde f(x) > 0</tex>, значит, он является пределом какой-то последовательности <tex>y_n</tex> в <tex>Y</tex>. Тогда по определению продолжения функционала и определению предела <tex>\forall \varepsilon > 0 \exists N \forall n \ge N: |f(y_n) - \widetilde f(x)| < \varepsilon</tex>, возьмем <tex>\varepsilon < \widetilde f(x) - \|f\|</tex>, тогда найдется такой номер <tex>N</tex>, что <tex>y_N \in Y, f(y_N) > \|f\|</tex>, то есть получили противоречие.
* непрерывность: вместо непрерывности можно показать ограниченность, а по только что доказанному, норма сохраняется, и функционал останется ограниченным
}}