Изменения

Перейти к: навигация, поиск

Теорема Банаха-Штейнгауза

10 байт добавлено, 16:42, 16 января 2013
Нет описания правки
Сначала покажем, что существует замкнутый шар <tex>\overline V(a, r)</tex>, в котором <tex>\sup\limits_{n} \sup\limits_{x \in \overline V}\|A_n x\| < +\infty</tex>. Покажем от противного, пусть такого шара нет, возьмем тогда произвольный замкнутый шар <tex>\overline V</tex>, в нем <tex>\sup\limits_{n} \sup\limits_{x \in \overline V}\|A_n x\| = +\infty</tex>.
Тогда в силу неограниченности найдется <tex> n_1 </tex> и <tex> x_1 \in \overline V: \|A_{n_1} x_1\| > 1</tex>; <tex>A_{n_1}</tex> непрерывен, значит, можно взять <tex>V_r(x_1) = \overline {V_1} \subset \overline V</tex>, где <tex>r (V_1) \le \frac {r(\overline V)}{2}</tex>.
Опять в силу неограниченности найдется <tex>n_2 > n_1 </tex> и <tex> x_2 \in V_1(x_1): \|A_{n_2} x_2\| \ge 2</tex>; <tex>A_{n_2}</tex> непрерывен, берем <tex>V_r(x_2) = \overline {V_2} \subset \overline {V_1}</tex>, где <tex>r (V_2) \le \frac {r(\overline V_1)}{2}</tex>.
Продолжая таким образом, выстраиваем последовательность вложенных шаров <tex>\overline V_{n_m}: \overline V_{n_{m+1}} \subset \overline V_{n_m}, r_{n_m} \to 0, \forall x \in \overline V_{n_m}: \|A_{n_m} x \| > m</tex>.
Анонимный участник

Навигация