Изменения

Перейти к: навигация, поиск

Теория Гильберта-Шмидта

44 байта добавлено, 23:19, 9 июня 2013
м
Нет описания правки
}}
{{TODO|t=Расставить точки в конце предложений, а то режет глаз.}} В этом параграфе будем иметь дело с Гильбертовым пространством <tex>\mathcal{H}</tex>, но над полем <tex>\mathbb{C}</tex>.
# (над <tex>\mathbb{R}</tex>): <tex>\langle x, y \rangle = \langle y, x \rangle</tex>
# (над <tex>\mathbb{C}</tex>): <tex>\langle x, y \rangle = \overline{\langle y, x \rangle}</tex>
В конечномерном пространстве <tex>\mathbb{R}^n = \{\langle x_1, x_2, \ldots, x_n \rangle\} </tex> (<tex>x_i \in \mathbb{R}</tex>) скалярное произведение двух векторов определялось как <tex>\langle \bar{x}, \bar{y} \rangle = \sum\limits_{k=1}^n x_n y_n</tex>.
В <tex>\mathbb{C}^n = \{\langle z_1, z_2, \ldots, z_n \rangle\}</tex> (<tex>z_i \in \mathbb{C}</tex>) же, <tex> \langle \bar{z}, \bar{y} \rangle = \sum\limits_{k=1}^n z_i \overline{y_i}</tex>.
Комплексное сопряжение добавлено для того, чтобы выполнялась первая аксиома скалярного произведения: <tex>\langle x, x \rangle \ge 0</tex>:
<tex>\langle \overline{z}, \overline{z} \rangle = \sum\limits_{k=1}^n z_k \overline{z_k} = \sum\limits_{k=1}^n |z_k|^2 \in \mathbb{R}, > 0</tex>.
Нас будут интересовать только линейные ограниченные операторы <tex>\mathcal{A} : \mathcal{H} \to \mathcal{H}</tex>.
{{Определение
|definition=Оператор <tex>\mathcal{A}</tex> называется ''самосопряжённым'' (<tex>\mathcal{A} = \mathcal{A}^*</tex>), если <tex>\forall x, y : \langle \mathcal{A}x, y \rangle = \langle x, \mathcal{A}y \rangle</tex>.
}}
Посмотрим, что же такое ''самосопряжённость'' для конечномерного оператора в <tex>\mathbb{C}^n</tex>. В <tex>\mathbb{C}^n</tex> линейный оператор представляет из себя матрицу <tex>A = \{a_{ij}\}</tex>.
{{Утверждение
|statement=Оператор <tex>\mathcal{A} : \mathbb{C}^n \to \mathbb{C}^n</tex> самосопряжён <tex>\iff</tex> <tex>A = \overline{A^T}</tex>
|proof=<tex>Az = \{a_{ij}\} \cdot \left(\begin{array}{c}z_1\\\vdots\\z_n\end{array}\right) = </tex> <tex>\left(\sum\limits_{j=1}^n a_{ij} z_j\right)_{i=1..n}</tex>.
<tex>\langle \mathcal{A}z, y \rangle = \langle Az, y\rangle = </tex> <tex>\sum\limits_{i=1}^n (Az)_i \overline{y_i} = </tex> <tex>\sum\limits_{i=1}^n\left(\sum\limits_{j=1}^n a_{ij} z_j\right)\overline{y_i} = </tex> <tex>\sum\limits_{i,j=1}^n a_{ij} z_j \overline{y_i} = </tex> <tex>\sum\limits_{j=1}^n\left(\sum\limits_{i=1}^n a_{ij}\overline{y_i}\right)z_j = </tex> <tex>\sum\limits_{j=1}^n\left(\sum\limits_{i=1}^n \overline{\overline{a_{ij}}}\cdot\overline{y_i}\right)z_j = </tex> <tex>\sum\limits_{j=1}^n z_j \overline{\left(\sum\limits_{i=1}^n\overline{a_{ij}}y_i\right)} = </tex> <tex>\langle z, By \rangle = </tex> <tex>\langle z, \overline{A^T} y \rangle</tex>
<tex>\langle \mathcal{A}x, x \rangle = \langle x, \mathcal{A}x \rangle </tex>, <tex>\langle \mathcal{A}x, x \rangle = \overline{\langle x, \mathcal{A}x \rangle}</tex> <tex>\Rightarrow</tex> <tex>\langle \mathcal{A}x, x\rangle \in \mathbb{R}</tex>, так как если комплексное число совпадает со своим сопряжением, то его мнимая часть равна нулю.
{{Утверждение|statement=Собственные числа самосопряжённого оператора вещественны|proof=Рассмотрим <tex>\lambda = \mu + i\nu \in \mathbb{C}</tex>, <tex>\lambda \mathcal{I} - \mathcal{A} = (\mu\mathcal{I} - \mathcal{A}) + i\nu\mathcal{I}</tex>.
<tex>\| (\lambda\mathcal{I}-\mathcal{A})x \|^2 = </tex> <tex>\langle (\lambda\mathcal{I}-\mathcal{A})x, (\lambda\mathcal{I}-\mathcal{A})x\rangle = </tex> <tex>\langle (\mu\mathcal{I}-\mathcal{A})x+i\nu x, (\mu\mathcal{I}-\mathcal{A})x+i\nu x \rangle = </tex> <tex>\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2 + \langle(\mu\mathcal{I}-\mathcal{A})x, i\nu x\rangle + \langle i\nu x, (\mu\mathcal{I}-\mathcal{A})x\rangle = </tex> [<tex>\mu \in \mathbb{R}</tex>, <tex>\mathcal{A}</tex>{{---}} самосопряжённый <tex>\Rightarrow</tex> <tex>(\mu\mathcal{I}-\mathcal{A})^* = (\mu\mathcal{I}-\mathcal{A})</tex>] <tex> = \|(\mu\mathcal{I}-\mathcal{A}x\|^2 + |\nu|^2\cdot\|x\|^2 + (-i\nu)\langle (\mu\mathcal{I}-\mathcal{A})x, x\rangle + i\nu\langle x, (\mu\mathcal{I}-\mathcal{A})x\rangle = </tex> <tex>\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2</tex>
Итого: <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|</tex>.}}
{{Утверждение
<tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^\bot</tex>
Для * Случай 2. <tex>\lambda \in notin \mathbb{R}</tex> проверено
* Случай 2. <tex>\operatorname{Ker}(\overline{\lambda }\notin mathcal{I}-\mathcal{A}) = \mathbb{R0\}</tex> {{TODO|t=тут тоже мутьпочему?}}
<tex>\overlineoperatorname{Cl} R(\lambda}\mathcal{I}-\mathcal{A} \Rightarrow ) = (\operatorname{Ker}(\overline{\lambda}\mathcal{I}-\mathcal{A}) ^*)^\bot = \mathcal{0\H}</tex>.}}
<tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \mathcal{H}</tex> (так как <tex>\operatorname{Ker} = \{0\}</tex>}}Из этого утверждения вытекает следующая теорема:
Из этого вытекает теорема.{{ Теорема
|statement = Если <tex>\mathcal{A}</tex> {{---}} самосопряженный, то <tex> \sigma (\mathcal{A}) \subset \mathbb{R} </tex>.
|proof = Проверим, что если <tex> \operatorname{Im } \lambda \ne 0</tex>, то <tex>\lambda \in \rho(\mathcal{A})</tex>.
<tex>\lambda = \mu + i\nu</tex>, <tex>\nu\ne0</tex>, <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex>
с другой стороны, неравенство <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\|\ge|\nu|\cdot\|x\|</tex> даёт априорную оценку <tex>y=(\lambda\mathcal{I}-\mathcal{A})x</tex>, откуда следует, что
<tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> {{---}} всюду плотнов <tex> \mathcal H </tex>.
А также, <tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> {{---}} замкнуто. Значит, <tex>\mathcal{H} = R(\lambda\mathcal{I}-\mathcal{A})</tex>
<tex>\langle \mathcal{A}x, x\rangle = \|x\|^2 \langle\mathcal{A}z, z\rangle \le m_+ \|x\|^2</tex>
Аналогично для , <tex>\langle\mathcal{A}z, z\rangle \ge m_-\|x\|^2 </tex>
{{Теорема
|statement=1Пусть <tex>A</tex> — самосопряженный оператор. Тогда:# <tex>\sigma(\mathcal{A}) \subset [m_-; m_+]</tex> 2. # <tex>m_+, m_- \in \sigma(\mathcal{A})</tex>|proof='''Пункт 1.''' Докажем, что из того, что <tex>\lambda > m_+</tex> следует, что <tex>\lambda \in \rho(\mathcal{A})</tex>. Аналогично докажем для <tex>m_-</tex>
Нужно проверять только <tex>\lambda \in \mathbb{R}</tex>
<tex>\mathcal{L} = m_+\mathcal{I} - \mathcal{A}</tex>, <tex>\mathcal{L}=\mathcal{L}^*</tex>
{{Определение|definition=Далее будем использовать обозначение <tex>[x, y] = \langle \mathcal{L}x, y\rangle</tex>}}.
Так как <tex>\langle \mathcal{L}x, x \rangle \ge 0</tex>, мгновенно проверяем, что <tex>[\_, \_]</tex> удовлетворяет аксиомам скалярного произведения, а значит, для <tex>[\_, \_]</tex> выполняется неравенство Шварца:
689
правок

Навигация