689
правок
Изменения
м
Нет описания правки
{{Определение
|definition=Оператор <tex>\mathcal{A}</tex> в гильбертовом пространстве называется ''самосопряжённым'' (<tex>\mathcal{A} = \mathcal{A}^*</tex>), если <tex>\forall x, y : \langle \mathcal{A}x, y \rangle = \langle x, \mathcal{A}y \rangle</tex>.
}}
{{Утверждение
|statement=Оператор <tex>\mathcal{A} : \mathbb{C}^n \to \mathbb{C}^n</tex> самосопряжён <tex>\iff</tex> <tex>A = \overline{A^T}</tex>.
|proof=<tex>Az = \{a_{ij}\} \cdot \left(\begin{array}{c}z_1\\\vdots\\z_n\end{array}\right) = </tex> <tex>\left(\sum\limits_{j=1}^n a_{ij} z_j\right)_{i=1..n}</tex>.
{{Утверждение
|statement=Если <tex>\mathcal{A}</tex>{{---}}самосопряжённый, а <tex>\lambda \in \mathbb{C}</tex>, то <tex>\mathcal{H} = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) \oplus \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>.
|proof=Доказательство разбивается на два случая: <tex>\lambda \in \mathbb{R}</tex> и <tex>\lambda \notin \mathbb{R}</tex>
* Случай 1. <tex>\lambda \in \mathbb{R}</tex>:
<tex>\lambda \in \mathbb{R} \Rightarrow (\lambda\mathcal{I}-\mathcal{A})^* = \lambda\mathcal{I}-\mathcal{A}</tex>
<tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^\bot</tex>
* Случай 2. <tex>\lambda \notin \mathbb{R}</tex>:
из неравенства <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex> при <tex>x \ne 0</tex> вытекает <tex>\operatorname{Ker}(\overline{\lambda}\mathcal{I}-\mathcal{A}) = \{0\}</tex>, так как для <tex>\lambda \notin \mathbb R</tex>, <tex>|\nu| \ne 0</tex>.