Изменения

Перейти к: навигация, поиск
Прямой и обратный гомоморфизм
* <tex> \delta' </tex> определяется следующими правилами:
** <tex> \delta'((q, \varepsilon), c, X) = \{((q, h(c)), X) \mid c \in \Sigma, q \in Q, X \in \Gamma \}</tex>. Когда буфер пуст, <tex> M' </tex> может прочитать свой следующий входной символ <tex> c </tex> и поместить <tex> h(c) </tex> в буфер.
** если Если <tex> (p, \gamma) \in \delta(q, b, X), b \in T \cup \varepsilon </tex>, то <tex> ((p, x), \gamma) \in \delta'((q, bx), \varepsilon, X) </tex>. Таким образом, <tex> M' </tex> всегда имеет возможность имитации перехода <tex> M </tex>, используя голову буфера. Если <tex> b \in T </tex>, то буфер должен быть непустым, но если <tex> b = \varepsilon </tex>, то буфер может быть пустым.* начальным Начальным состоянием <tex> M' </tex> является <tex> (s, \varepsilon) </tex>, т.е. <tex> M' </tex> стартует в начальном состоянии <tex> M </tex> с пустым буфером.* допускающими Допускающими состояниями <tex> M' </tex> являются состояния <tex> (q, \varepsilon)</tex>, где <tex> q \in T </tex>.Таким образом получаем, что <tex>(s, h(w), Z_0) \vdash_M^{*} (p, \varepsilon, \gamma) \Leftrightarrow ((s, \varepsilon), w, Z_0) \vdash_{M'}^{*} ((p, \varepsilon), \varepsilon, \gamma)</tex>, то есть автомат <tex> M' </tex> допускает те и только те слова, которые принадлежат языку <tex> h^{-1}(L) </tex>.
=== Разворот ===
222
правки

Навигация