Изменения

Перейти к: навигация, поиск

Теория Рамсея

11 байт убрано, 02:40, 7 января 2014
Нет описания правки
Основным объектов изучения будут полные графы, ребра которых покрашены в несколько цветов. В дальнейшем, для простоты, полный граф на <tex>n</tex> вершинах будем называть кликой.
{{Определение
|id=o1def1
|definition=Пусть <tex>m, n \in \mathbb N</tex>. Число Рамсея <tex>r(m, n)</tex> — это наименьшее из таких чисел <tex>x \in \mathbb N</tex>, что при любой раскраске ребер полного графа на <tex>x</tex> вершинах в два цвета найдется клика на <tex>n</tex> вершинах с ребром цвета 1 или клика на <tex>m</tex> вершинах с ребром цвета 2.}}
===Существование. Оценки сверху===
{{Теорема|id=t1ter1|authorabout=P. Erdos, G. Szekeres1
|statement=Пусть <tex>n,m \ge 2</tex>-натуральные числа. Тогда <tex>r(n,m) \le r(n,m-1)+r(n-1,m)</tex>. Если оба числа <tex>r(n,m-1)</tex> и <tex>r(n-1,m)</tex>-четные, то неравенство строгое.
|proof=
1) Рассмотрим клику на <tex>r(n, m - 1) + r(n - 1, m)</tex> вершинах с рёбрами цветов 1 и 2 и ее произвольную вершину <tex>a</tex>. Тогда либо от вершины <tex>a</tex> отходит хотя бы <tex>r(n, m - 1)</tex> рёбер цвета 2, либо от вершины <tex>a</tex> отходит хотя бы <tex>r(n—1, m)</tex> рёбер цвета 1. Случаи аналогичны, рассмотрим первый случай и клику на <tex>r(n, m — 1)</tex> вершинах, соединенных с <tex>a</tex> рёбрами цвета 2. На этих вершинах есть либо клика на <tex>n</tex> вершинах с ребрами цвета 1, либо клика на <tex>m—1</tex> вершинах с рёбрами цвета 2. Во втором случае добавим вершину <tex>a</tex> и получим клику на <tex>m</tex> вершинах с рёбрами цвета 2. Теперь из определения <tex>r(n, m)</tex> следует [[#t1ter1|неравенствоиз теоремы 1]].
2) Рассмотрим клику на <tex>r(n, m-l)+r(n-1, m)-1</tex> вершинах с рёбрами цветов 1 и 2 и его произвольную вершину <tex>a</tex>. Если вершине <tex>a</tex> инцидентны хотя бы <tex>r(n,m-1)</tex> рёбер цвета 2 или хотя бы <tex>r(n-1,m)</tex> рёбер цвета 1, то мы найдём в графе клику на <tex>n</tex> вершинах с рёбрами цвета 1 или клику на <tex>m</tex> вершинах с рёбрами цвета 2. Остаётся лишь случай, когда вершине <tex>a</tex> инцидентны ровно <tex>r(n, m-1)-1</tex> рёбер цвета 2, то же самое для всех остальных вершин. Это означает, что в графе из рёбер цвета 2 всего <tex>r(n, m-1)+r(n-1, m)-1</tex> вершин и степень каждой вершины равна <tex>r(n, m-1)-1</tex>. Однако, тогда в графе нечётное количество вершин нечётной степени. Противоречие показывает нам, что в случае, когда <tex>r(n, m-1)</tex> и <tex>r(n-1,m)</tex> — чётные, выполняется неравенство <tex>(n, m)<r(n, m-1)+r(n-1, m)-1</tex>.
}}
{{Утверждение|id=ts1u1|about=Следствие 1|statement=Для натуральных чисел <tex>m,n</tex> выполняется равенство <tex>r(n,m) \le C_{n+m-2}^{n-1}</tex>
|proof=
Очевидно, <tex>C^{n-1}_{n+m-2}=1</tex> при <tex>n=1</tex> или <tex>m=1</tex>, как и соответствующие числа Рамсея. Индукцией по <tex>n</tex> и <tex>m</tex> при <tex>n,m \ge 2</tex> получаем
<tex>r(n,m) \le r(n,m-1)+r(n-1,m) \le C^{n-1}_{n+m-3}+C^{n-2}_{n+m-3}=C^{n-1}_{n+m-2}</tex>
}}
С помощью неравенства из [[#t1ter1|теоремы]] можно получить несколько точных значений чисел Рамсея.
Отметим что <tex>r(3,3) \le 2r(2,3)=6</tex>. Так как числа <tex>r(3,3)</tex> и <tex>r(2,4)</tex> четны, можно вывести неравенства <tex>r(3,4) \le r(3,3)+r(2,4)-1=9</tex>. И, наконец, <tex>r(3,5) \le r(2,5)+r(3,4)=14</tex>, а также <tex>r(4,4) \le 2r(3,4)=18</tex>
299
правок

Навигация