Изменения

Перейти к: навигация, поиск

Список заданий по ДМ-сем2

2194 байта добавлено, 16:37, 13 февраля 2014
Нет описания правки
# Что можно сказать про $H(A | B)$ если $a_i$ и $b_j$ независимы для любых $i$ и $j$?
# Что можно сказать про $H(A | A)$?
# Постройте схему получения вероятности 1/3 с помощью честной монеты, имеющую минимальное математическое ожидание числа бросков. Докажите оптимальность вашей схемы.# Рассмотрим случайное блуждание точки на прямой, пусть точка начинает в точке $p$ ($p$ - целое) и каждую секунду переходит равновероятно на 1 влево или вправо. Точка поглощается в точках 0 и $n$ ($n$ целое, больше $p$). Найдите вероятность поглощения в точке 0.# Рассмотрим случайное блуждание точки на прямой, пусть точка начинает в точке 0 и каждую секунду переходит равновероятно на 1 влево или вправо. Докажите, что математическое ожидание максимума координаты точки за $n$ шагов есть $O(\sqrt{n})$.# Докажите, что математическое ожидание числа экспериментов при симуляции одного распределения другим асимптотически равно отношению энтропий распределений (считайте, что энтропия симулируемого распределения больше).# Пусть $f$ и $g$ - непрерывные возрастающие функции, причем $\lim\limits_{x\to-\infty}f(x)=0$, $\lim\limits_{x\to-\infty}g(x)=0$, $\lim\limits_{x\to+\infty}f(x)=1$, $\lim\limits_{x\to+\infty}g(x)=1$, кроме того считайте, что вы можете вычислять $f(x)$, $g(x)$, $f^{-1}(x)$ и $g^{-1}(x)$. У вас есть случайная величина с функцией распределения $f(x)$. Как вам получить случайную величину с функцией распределения $g(x)$?
</wikitex>
Анонимный участник

Навигация