333
правки
Изменения
→Способы закончить поиск
! Способы || Плюсы || Минусы || Оценка на число итераций
|-
| Окончание, когда рассматриваемый отрезок станет меньше заданной погрешности <tex> \varepsilon </tex>. || Заданная точность найденного значения. || Алгоритм может зациклиться. В компьютере мы работаем с конечным числом вещественных чисел, у которых есть точность. При больших значениях функции длина отрезка может никогда не уменьшиться до заданного значения. || В данном случае нам нужно рассмотреть <tex> (\genfrac{}{}{}{}{R - L-R)/}{\varepsilon } </tex> чисел <tex> \Rightarrow </tex> примерное число итераций <tex> \log((\genfrac{}{}{}{}{R - L-R)/}{\varepsilon}) </tex>.
|-
| Окончание, когда значение функции на концах отрезках различается менее, чем на заданную погрешность <tex> \varepsilon </tex>. || Значение функции от найденного значения имеет заданную точность. || а) Возможна большая погрешность, если функция будет очень медленно возрастать. <br> б) Может зациклиться по той же причине, что и в первом способе. || Аналогичная с первым случаем логика, примерное число итераций <tex> \log((\genfrac{}{}{}{}{f(LR)-f(R)L)/}{\varepsilon}) </tex>.
|-
| «Абсолютно точный поиск» <br> Окончание, когда границы отрезка — два соседних по представлению значения в типе данных. Утверждается, что два числа — соседние, если середина их отрезка совпадает или с левой, или с правой границей. || Максимально возможная точность найденного значения. || Возможно плохое поведение, если искомый аргумент равен нулю. || При работе с числами с плавающей точкой количество итераций зависит от плотности чисел на данном отрезке. При работе с числами фиксированной точности (= <tex>\varepsilon</tex>) количество итераций аналогично первому и второму случаю равно <tex> \log((\genfrac{}{}{}{}{R - L-R)/}{\varepsilon}) </tex>.
|-
| «Итеративный способ» <br> Выполнение конечного числа итераций. || У способа фиксированная погрешность. || Довольно плохая точность, если границы отрезка находятся на большом расстоянии. || Выполняется заданное количество итераций.