12
правок
Изменения
Нет описания правки
7) <tex>G</tex> - Граф, отличный от K<sub>3</sub> <tex>\cup</tex> K<sub>1</sub> и K<sub>3</sub><tex>\cup</tex> K<sub>2</sub>, <tex>p = q + 1</tex>, и если любую пару несмежных вершин соединить ребром <tex>x</tex>, то в графе <tex>G + x</tex> будет точно один простой цикл.
|proof=
Для примера докажем эквивалентность первых четырёх утверждений.
1) <tex> \to </tex> 2) Поскольку <tex>G</tex> связный граф, то любые две его вершины соединены простой цепью. Пусть <tex>P_1</tex> и <tex>P_2</tex> - две различные простые цепи, соединяющие вершины <tex>u</tex> и <tex>v</tex>, и пусть <tex>w</tex> - первая вершина, принадлежащая <tex>P_1</tex> (при переходе по <tex>P_1</tex> из <tex>u</tex> в <tex>v</tex>), такая, что <tex>w</tex> принадлежит и <tex>P_1</tex> и <tex>P_2</tex>, но вершина, предшествующая ей в <tex>P_1</tex>, не принадлежит <tex>P_2</tex>.
}}