==Теорема Банаха о сжимающем отображении==
'''Def''': {{Определение|definition=Пусть на замкнутом шаре <tex>\overline{V} \subset X</tex>, где <tex>X</tex> - метрическое пространство, определён оператор <tex>A: \overline{V} \subset X \to X</tex>. Он называется '''сжатием ''' на <tex>\overline{V}</tex>, если <tex>\exists\alpha\in(0; 1)</tex> такой, что для <tex>{\forall}x,y \in M</tex> выполняется <tex>{\rho(Ax,Ay)\leqslant\alpha{\cdot}\rho(x,y)}</tex>.}}
'''Th.'''{{Теорема|statement=(''Банаха о неподвижной точке'')
Пусть <tex>T : \overline{V} \to \overline{V}</tex> и является сжатием, тогда в этом шаре у оператора <tex>T</tex> <tex>\exists !</tex> неподвижная точка.
}}
[[Теорема Банаха о неподвижной точке]]
==Дифференцирование отображений, неравенство Лагранжа.==