Изменения

Перейти к: навигация, поиск

Список заданий по АСД

3163 байта добавлено, 19:46, 18 октября 2014
Нет описания правки
# Доказать формулу Зыкова для хроматического многочлена графа $G$: $P_G(x)=\sum\limits_{i=1}^n pt(G,i)x^{\underline{i}}$, где $pt(G,i)$ — число способов разбить вершины $G$ на $i$ независимых множеств.
# Доказать формулу Уитни: пусть $G$ - обыкновенный $(n, m)$ - граф. Тогда коэффициент при $x^i$, где $1\le i\le n$ в хроматическом многочлене $P_G(x)$ равен $\sum \limits_{j=0}^{m}{(-1)^jN(i, j)}$, где $N(i, j)$ - число остовных подграфов графа $G$, имеющих $i$ компонент связности и $j$ рёбер.
# Доказать теорему об отсутствии кратчайшего пути на базе алгоритма Форда-Беллмана. (от $s$ до $v$ нет кратчайшего пути тогда и только тогда, когда она достижима из $u$, такой что после выполнения алгоритма Форда-Беллмана найдется ребро $xu$, для которого $d[x] + w(xu) < d[u]$)
# Разработать алгоритм на базе Форда-Беллмана, который ищет в графе отрицательный цикл.
# Приведите пример графа с отрицательными рёбрами, но без отрицательных циклов, на котором алгоритм Дейкстры работает неверно.
# Пусть веса рёбер не обязательно неотрицательны, но отрицательных циклов нет. Добавим в алгоритм Дейкстры следующее: если производится успешная релаксация по ребру $vx$ и $x \in U$, то вешина $x$ удаляется из $U$. Докажите, что, если этот алгоритм находит кратчайшие пути в графе.
# Приведите пример графа, в котором алгоритм из предыдущего задания рабоатает экспоненциальное время.
# Модифицируем алгоритм Дейкстры следующим образом: будем вместо приоритетной очереди использовать FIFO-очередь. Если при релаксации до вершины, которая уже была в очереди, расстояние улучшается, добавим ее снова в очередь. Докажите, что полученный алгоритм ищет кратчайшие пути в графе за O(VE).
# Укажите способ построить для некоторых $c_1, c_2 >0$ и любых V, E, где $c_1 V \le E \le c_2 V^2$ граф, на котором алгоритм из предыдущего задания работает за $\Omega(VE)$.
# Предложите граф, в котором алгоритм Дейкстры делает $\Omega(E)$ успешных релаксаций
# Пусть в графе $G$ есть вершина $s$, из которой достижимы все вершины. Обозначим как $\mu^*$ минимальный средний вес цикла в графе. Докажите, что $\mu^* = \min_v\max_k\frac{d_n(v)-d_k(v)}{n-k}$, где $d_i(v)$ - длина кратчайшего пути из $s$ до $v$, содержащего ровно $i$ ребер.
# Модифицируйте алгоритм Форда-Беллмана так, чтобы он находил в графе циклы минимального среднего веса за $O(VE)$ и $O(V^2)$ памяти.
</wikitex>
Анонимный участник

Навигация