Изменения

Перейти к: навигация, поиск

Алгоритм Краскала

90 байт добавлено, 17:46, 19 ноября 2014
Реализация
<tex>\mathtt{Unite}(v, u)\ </tex>
==Задача о максимальном ребре минимального веса==
Очевидно, что максимальное ребро в MST минимально. Пусть это не так, тогда рассмотрим разрез, который оно пересекает. В этом разрезе должно быть ребро с меньшим весом, иначе максимальное ребро было бы минимальным, но в таком случае минимальный остов не является минимальным, следовательно, максимальное ребро в минимальном остовном дереве минимально. Если же максимальное ребро в остовном дереве минимально, то такое дерево может не быть минимальным. Зато его можно найти быстрее чем MST, а конкретно за <tex>O(E)</tex>. Для этого с помощью [[Поиск_k-ой_порядковой_статистики_за_линейное_время | алгоритма поиска k-ой порядковой статистики]] найдем за <tex>O(E)</tex> ребро-медиану и разделим множество ребер на два подмножества, так чтобы в первом подмножестве ребра были меньше медианы, а во втором больше. Проверим образуют ли ребра из первого подмножества остов, просто сделав [[Использование_обхода_в_глубину_для_поиска_компонент_сильной_связности|конденсацию]] за <tex>O(E)</tex>. Если да, то рекурсивно найдем ответ для данного подмножества, иначе рассмотрим граф из скондесированных компонент и оставшихся ребер. На каждой итерации остается половина ребер, следовательно, время работы алгоритма <tex>O(E+\frac{E}{2}+\frac{E}{4}+...+1)=O(E)</tex>, так как <tex>\sum\limits_{i=1}^n\frac{1}{2^i} = 1</tex>.
Анонимный участник

Навигация