63
правки
Изменения
м
Нет описания правки
Сначала разберем случай <tex>p^2</tex>.
Пусть <tex>g</tex> — первообразный корень по модулю <tex>p\text{, }k=ord_{p^2}(g)</tex>. Тогда <tex>g^k=1(p^2)</tex>, следовательно <tex>g^k=1(p)</tex>, и значит <tex>k\vdots (p-1)</tex>. Также заметим, что <tex>\phi(p^2)=p(p-1)\vdots k</tex>. Получаем два случая — <tex>k=p-1</tex>, и <tex>k=p(p-1)</tex>. Во втором случае получается что <tex>g</tex> — первообразный корень по модулю <tex>p^2</tex>. Теперь рассмотрим первый случай: применим предыдущие рассуждения к числу <tex>g+p</tex> (это возможно, так как <tex>g+p\equiv g (p)</tex>). <tex>(g+p)^{p-1}=g^{p-1}+c^{1}_{p-1}g^{p-2}p+...</tex> — заметим, что все слагаемые, начиная с третьего содержат множитель <tex>p^2</tex> — поэтому обнуляются по модулю <tex>p^2</tex>. <tex>g^{p-1}=1(p^2)</tex>, а <tex>c^{1}_{p-1}g^{p-2}p=p(p-1)g^{p-2}\neq 0(p^2)</tex>, значит <tex>(g+p)^{p-1}\neq 1(p^2)</tex>, значит число <tex>k</tex>, для <tex>g+p</tex> не может быть равно <tex>p-1</tex>, тогда <tex>g+p</tex> — первеобразный корень по модулю <tex>p^2</tex>. Аналогичным образом, если имеется первообразный корень по модулю <tex>p^a</tex> отыскивается первообразный корень по модулю <tex>p^{a+1}</tex>.
Таким образом остается разобрать случай <tex>2\cdot p^n</tex>. Пусть <tex>g</tex> — первообразный корень по модулю <tex>p^n</tex>. Утверждается, что нечетное из <tex>g</tex> и <tex>g+p^n</tex> - — первообразный корень по модулю <tex>2\cdot p^n</tex>. Переобозначим это нечетное число за <tex>g</tex>, для удобства. Пользуяся свойствами [[Функция Эйлера|функции Эйлера]], получим <tex>\phi (2\cdot p^n)=\phi(2)\cdot\phi(p^n)=\phi(p^n)</tex>. По определению <tex>g</tex> имеем <tex>ord_{p^n}(g)=\phi(p^n)</tex>, а так же <tex>(g;2\cdot p^n)=1</tex>. Отсюда очевидно получаем <tex>ord_{2\cdot p^n}(g)\geqslant ord_{p^n}(g)=\phi(p^n)=\phi(2 \cdot p^n)</tex>. Но порядок числа по любому взаимнопростому с этим числом модулю не может превосходить значения [[Функция Эйлера|функции Эйлера]] от этого модуля, то есть <tex>ord_{2\cdot p^n}(g)\leqslant \phi(2\cdot p^n)=\phi(p^n)</tex>. Получаем <tex>ord_{2 \cdot p^n}(g)=\phi(2 \cdot p^n)</tex>, что и требовалось доказать.
}}
{{Утверждение
<tex>a^{2^{k-1}}=1(mod~2^{k+1})\Leftrightarrow a^{2^{k-1}}-1=0(mod~2^{k+1})\Leftrightarrow (a^{2^{k-2}}-1)\cdot(a^{2^{k-2}}+1)=0(mod~2^{k+1})</tex>.
<br>
Теперь докажем, что последнее сравнение верно. Из предположения индукции следует, что либо <tex>a^{2^{k-2}}-1=0(mod~2^{k+1})</tex> — и тогда получаем требуемое, либо <tex>a^{2^{k-2}}-1=2^{k}(mod~2^{k+1})</tex>. В этом случае рассмотрим второй сомножитель - — либо <tex>a^{2^{k-2}}+1=2(mod~2^{k+1})</tex> - — тогда умножая на полученное значение для первого получим <tex>(a^{2^{k-2}}-1)\cdot(a^{2^{k-2}}+1)=2^{k}\cdot 2=2^{k+1}=0(mod~2^{k+1})</tex>, либо <tex>a^{2^{k-1}}+1=2^{k}+2(mod~2^{k+1})</tex> - — тогда в произведении получим <tex>(a^{2^{k-2}}-1)\cdot(a^{2^{k-2}}+1)=2^{k}\cdot(2^{k}+2)=2^{2\cdot k}+2^{k+1}=0(mod~2^{k+1})</tex>. Получается, что в любом случае сравнение, которое требовалось доказать выполняется. Значит выполняется и <tex>a^{2^{k-1}}=1(mod~2^{k+1})</tex>.
<br>
Мы доказали базу и шаг индукции, следовательно, доказали само утверждение.