Изменения
Нет описания правки
Теперь в силу минимальности графа <tex> G </tex> графы <tex> G''_1 </tex> и <tex> G''_2 </tex> планарны. Возьмем укладку графа <tex> G''_1 </tex> на плоскости такую, что ребро <tex> e_1 = av </tex> лежит на границе внешней грани. Во внешней грани графа <tex> G''_1 </tex> возьмем укладку графа <tex> G''_2 </tex> такую, что ребро <tex> e_2 = vb </tex> лежит па границе внешпей грани (рис. 5).
[[Файл:p-k.5.png|thumb|right|рис. 5]]
Отметим, что опять вершина <tex> v </tex> представлена на плоскости в двух экземплярах. Очевидно, добавление ребра <tex> е e = ab </tex> не меняет планарности графа <tex> G''_1 U G''_2</tex>. Склеим оба вхождения вершины <tex> v </tex> точно так же, как это мы сделали в предыдущем пункте доказательства (рис. 6).
[[Файл:p-k.6.png|thumb|right|рис. 6]]
Сотрем затем ранее добавленные ребра <tex> e_1 </tex> и <tex> e_2 </tex>. В результате мы получим укладку графа <tex> G </tex> на плоскости, что невозможно. Утверждение доказано.