53
правки
Изменения
Нет описания правки
{{Теорема
|about=Теорема об укладке графа с планарными компонентами реберной двусвязности.
|statement=Если [[Отношение реберной двусвязности|компоненты реберной двусвязности]] (к.р.д.) графа <tex>G</tex> планарны, то и сам граф <tex>G</tex> планарен.
|proof=
}}
Докажем утверждение теоремы для одной из компоненты компонент связности графа <tex>G</tex>. Ясно, что имея укладки на плоскости каждой из компонент связности какого-либо графа , мы можем получить укладку на плоскости и всего графа.Итак пусть граф <tex>G</tex> связен. Рассмотрим связный подграф <tex>T</tex> графа компонент реберной двусвязности к.р.д. графа <tex>G</tex>. Из [[Граф компонент реберной двусвязности|леммы]] и из связности <tex>T</tex> - получаем, что <tex>T</tex> - [[Дерево, эквивалентные определения|дерево]].
Докажем индукцией по числу вершин в графе <tex>T</tex>, что подграф <tex>G'</tex> графа <tex>G</tex> состоящий из компонент реберной двусвязности к.р.д. и мостов графа <tex>G</tex> принадлежащих графу <tex>T</tex> планарен (далее будем говрить, что <tex>G'</tex> соответствует <tex>T</tex>).
'''База индукции.'''
<div style="border:1px solid #000; width:90%; margin: 10px; padding:4px; background-color: #fdfdfd; padding-left:10px;">
Если <tex>|VT| = 1</tex>, то граф <tex>T</tex> - тривиальный. Его единственная вершина - это компонента реберной двусвязности к.р.д. графа <tex>G</tex>, которая по утверждению теоремы - планарна.
</div>
<div style="border:1px solid #000; width:90%; margin: 10px; padding:4px; background-color: #fdfdfd; padding-left:10px;">
Пусть утверждение верно для <tex>|VT| < m</tex>. Рассмотрим <tex>T</tex>, для которого <tex>|VT| = m > 1</tex>, и соответствующий <tex>T</tex> подграф <tex>G'</tex> графа <tex>G</tex>. Докажем, что <tex>G'</tex> - планарен.
Положим <tex>G_1</tex> - блок — к.р.д. графа <tex>G'</tex> являющийся висячей вершиной дерева <tex>T</tex>, a <tex>e</tex> - — мост в <tex>G'</tex> инцидентный <tex>G_1</tex> в <tex>T</tex>. <tex>G_1</tex> планарен по утверждению теоремы, т.к. блоки к.р.д. графа <tex>G'</tex> совпадают с блоками к.р.д. графа <tex>G</tex>. Далее рассмотрим подграф <tex>G_2</tex> графа <tex>G'</tex> соответствующий дереву <tex>T\backslash \{G_1\}</tex>. Поскольку <tex>G_1</tex> - — висячая вершина <tex>T</tex>, то <tex>T\backslash \{G_1\}</tex> связен, и очевидно также как и <tex>T</tex> является подграфом графа компонент реберной двусвязности к.р.д. <tex>G</tex>. А значит <tex>G_2</tex> планарен по предположению индукции, т.к. <tex>|V(T\backslash \{u\})| = |VT| - 1 = m - 1 < m</tex>.
Из определения ребер дерева компонент реберной двусвязности к.р.д. получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> соединены в графе <tex>G'</tex> единственным мостом <tex>e \in G'</tex> инцидентным блоку <tex>G_1</tex> в дереве <tex>T</tex>. Поскольку <tex>T = \{G_1\}\cup e\cup \{G_2\}</tex>, то и <tex>G' = \{G_1\}\cup e\cup \{G_2\}</tex>. Покажем как из укладок <tex>G_1</tex> и <tex>G_2</tex> получить укладку <tex>G'</tex>.
Уложим <tex>G_2</tex> на сфере и уложим <tex>G_1</tex> на плоскости так, чтобы ребро <tex>e_1 \in G_1</tex> смежное с <tex>e</tex> в G' оказалось на границе внешней грани (по [[#l1|лемме II]] это возможно). Обозначим за <tex>u</tex> - вершину из <tex>G_2</tex> инцедентную <tex>e</tex>. Сожмем часть плоскости, содержащую укладку <tex>G_1</tex> так чтобы она вмещалась в одну из граней укладки <tex>G_2</tex> смежную с <tex>u</tex>. Проводя ребро <tex>e</tex> от вершины <tex>u</tex> к инцидентоной ему вершине графа <tex>G_1</tex> мы получаем укладку графа <tex>G'</tex> на сфере, а значит (по [[#l1|лемме I]]) <tex>G'</tex> планарен, следовательно предположение индукции верно.
</div>
Рассматривая в качестве <tex>T</tex> граф компонент реберной двусвязности к.р.д. <tex>G</tex> получаем что <tex>G</tex> - планарен.
}}
==Источники==