Изменения
→Доказательство
== Доказательство ==
Зафиксируем функции <tex>f</tex> и <tex>g</tex>.
Рассмотрим язык <tex>L = \{ \langle m,x \rangle \mid m(\langle m,x \rangle )</tex> не допускает, используя не более <tex> f(|\langle m,x\rangle|)</tex> памяти <tex>\}</tex> .
Рассмотрим выход машины <tex>m_0(</tex> на входе <tex>\langle m_0,x\rangle)</tex>.
Пусть <tex>m_0</tex> допускает <tex>\langle m_0,x\rangle</tex>. Тогда <tex>\langle m_0,x\rangle \in L</tex>, но в <tex>L</tex> по определению не может быть пары <tex>\langle m,x\rangle</tex>, которую допускает <tex>m</tex>. Таким образом, получаем противоречие<tex>m_0</tex> не может допускать <tex>\langle m_0,x\rangle</tex>.
Если <tex>m_0</tex> не допускает <tex>\langle m_0,x\rangle</tex>, то <tex>\langle m_0,x\rangle</tex> не принадлежит языку <tex>L</tex>. Это Из определения это значит, что либо <tex>m_0</tex> допускает <tex>\langle m_0,x\rangle</tex>, либо не допускает, используя памяти больше <tex>f(|\langle m_0,x\rangle|)</tex>. Но <tex>m_0</tex> выбрана таким образом, что на любом входе <tex>x</tex> она использует не более <tex>f(|x|)</tex> памяти. Получаем противоречие.
Следовательно, такой машины не существует. Таким образом, <tex>L \notin DSPACE(f)</tex>.
<tex>L \in DSPACE(g)</tex>, так как языку <tex>L</tex> можно представить сопоставить машину Тьюринга <tex>m_0</tex>, распознающую <tex>L</tex>. На и такую, что на любом входе <tex>\langle m_1,x\rangle \in L</tex> <tex>m_0</tex> будет работать аналогично <tex>m_1</tex>. Если <tex>m_1</tex> завершила работу, используя не более <tex>f(|\langle m_1,x\rangle|)</tex> памяти, и не допустила, то <tex>m_0</tex> допускает <tex>\langle m_1,x\rangle</tex>. В другом случае не допускает. Любая такая машина использует памяти не более <tex>f(|\langle m_1,x\rangle|)</tex>. <tex> \lim \limits_{n \rightarrow \infty} f(n)/g(n) = 0</tex>, поэтому начиная с некоторого <tex>n</tex>, <tex>m_1</tex> будет использовать памяти не более <tex>g(|\langle m_1,x\rangle|)</tex>.
Получается, что <tex>L \in DSPACE(g(n)) \setminus DSPACE(f(n))</tex> и <tex>L \neq \emptyset</tex>. Следовательно, <tex>DSPACE(g(n)) \neq DSPACE(f(n))</tex>
Теорема доказана.