Изменения

Перейти к: навигация, поиск

Квантовые конечные автоматы

270 байт добавлено, 21:02, 10 января 2015
Описание
== Описание==
Для начало воспользуемся графовым представлением [[Детерминированные конечные автоматы|ДКА]]. Пусть в нем <tex>N</tex> вершин и все вершины пронумерованы. Тогда для представления такого графа можно воспользоваться набором [[Матрица смежности графа|Матрицей матриц смежности]] таких, что каждая матрица размера <tex>[N \times N]</tex> и что для каждого символа <tex> c \in \Sigma</tex>сопоставляется единственная матрица из этого набора. Каждая матрица записана <tex>0</tex> и <tex>1</tex> таким образом, в котором что <tex>1</tex> означает переход из состояние <tex>i</tex> в <tex>j</tex> по символу <tex>c</tex>, а <tex>0</tex> {{---}} его отсутствие. В этом случаи, текущее состояние автомата записывается как вектор, размерности <tex>N</tex>, в котором будет лишь одна единица, обозначающая текущее положение состояния. При помощи такого описания можно легко делать переходы из нынешнего состояние в новое состояние по символу <tex> c \in \Sigma</tex> обыкновенный ''умножением матриц''.
* Пусть у нас есть ДКА с <tex>N</tex> вершинами и его <math>\Sigma=\{c_1, c_2, c_3, \dots\}</math>. Тогда по описанному определению можно составить матрицы смежности <math>\{U_\alpha | \alpha \in \Sigma \}</math> размерности <tex>[N \times N]</tex>. Так же введем <tex>N</tex> {{---}} размерный вектор <tex>q \in Q</tex>, описывающее состояние ДКА, a <tex>q_0</tex> {{---}} начальное состояние автомата. Тогда для перехода из состояния <tex>q_0</tex> в <tex>q</tex> по строчке <tex> s = \langle \alpha_0, \alpha_1,\dots \rangle</tex> нужно воспользоваться правилом умножения матриц из линейной алгебры : <math>q = \cdots U_{\alpha_1} U_{\alpha_0} q_0.</math>
69
правок

Навигация