Изменения

Перейти к: навигация, поиск
Теорема
: Допустим в паросочетание внесли изменения вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex> и из вершины <tex>x</tex> появилась дополняющая цепь.
: Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из <tex>x</tex> существовала и в исходном паросочетании.<br><br>
: Пусть <tex>p</tex> {{---}} ближайшая к <tex>x</tex> вершина, которая принадлежит и новой дополняющей цепи и цепи <tex>(y \rightsquigarrow z)</tex>.
: Тогда <tex>MP</tex> - последнее ребро на отрезке <tex>(y \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>NP</tex> – последнее ребро на отрезке <tex>(z \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>QP</tex> - последнее ребро лежащее на отрезке <tex>(x \rightsquigarrow p)</tex> новой дополняющей цепи(см. Рисунок 1).<br><br>
: Допустим <tex>MP</tex> принадлежит паросочетанию <tex>M'</tex>, тогда <tex>NP</tex> ему не принадлежит.<br>
25
правок

Навигация