Изменения

Перейти к: навигация, поиск

Метод двоичного подъёма

12 байт добавлено, 07:57, 1 июня 2015
Нет описания правки
<tex>dp[v][i]= \begin{cases}
p[v] & i = 0,\\
dp[dp[v][i - 1]][i - 1] & i \: \textgreater \: 0.
\end{cases}</tex>
===Ответы на запросы===
Ответы на запросы будут происходить за время <tex> O(\log{n})</tex>.
Для ответа на запрос заметим сначала, что если <tex> c = LCA(v, u) </tex>, для некоторых <tex> v </tex> и <tex> u </tex>, то <tex> d[c] \le leqslant \min(d[v], d[u])</tex>. Поэтому если <tex> d[v] < d[u] </tex>, то пройдем от вершины <tex> u </tex> на <tex> (d[u] - d[v]) </tex> шагов вверх, это и будет новое значение <tex> u </tex> и это можно сделать за <tex> O(\log{n}) </tex>. Можно записать число <tex> (d[u] - d[v]) </tex> в двоичной системе, это представление этого число в виде суммы степеней двоек, <tex> 2 ^ {i_1} + 2 ^ {i_2} + \ldots + 2 ^ {i_l} </tex> и для всех <tex> i_j</tex> пройти вверх последовательно из вершины <tex> u </tex> в <tex> dp[u][i_j] </tex>.
Дальше считаем, что <tex> d[v] = d[u] </tex>.
97
правок

Навигация