97
правок
Изменения
→Решение
Рассматриваемый алгоритм состоит из <tex>\lceil\log n\rceil + 1</tex> итераций. На <tex>k</tex>-той итерации (<tex>k=0..\lceil\log n\rceil </tex>) сортируются циклические подстроки длины <tex>2^k</tex>. На последней, <tex>\lceil\log n\rceil</tex>-ой итерации, будут сортироваться подстроки длины <tex>2^{\lceil\log n\rceil} \geqslant n</tex>, что эквивалентно сортировке циклических сдвигов.
На каждой итерации алгоритм помимо будем хранить массив перестановки <tex>p[0..n-1]</tex> индексов циклических подстрок будет поддерживать для каждой циклической подстроки длиной , где <tex>2^kp[i]</tex>- номер суффикса, начинающейся занимающего позицию <tex>i</tex> в позиции текущей перестановке. Также будем хранить массив классов эквивалентности <tex>ic[0 .. n - 1]</tex>, номер класса эквивалентности где <tex>c[i]</tex>- класс эквивалентности, которому эта подстрока принадлежитпрефикс длины <tex>2^k</tex> суффикса под номером <tex>p[i]</tex>. В самом деле, среди подстрок могут быть одинаковые, и алгоритму понадобится информация об При этом. Кроме тогоесли префикс суффикса под номером <tex>p[i]</tex> лексикографически меньше префикса суффикса под номером <tex>p[j]</tex>, номера классов эквивалентности то <tex>c[i] < c[j]</tex> будем давать таким образом. Если же префиксы равны, чтобы они сохраняли то и информацию о порядке: если один их классы эквивалентности одинаковы. Так как мы вставили в строку символ <tex>\$</tex>, то к концу алгоритма каждый суффикс меньше другогобудет иметь уникальный класс эквивалентности, значит, то и номер класса он должен получить меньшиймы установим порядок суффиксов.
== Описание алгоритма ==