Изменения
→Доказательство принадлежности 3SAT классу NPH
* Если <tex>(x_{1}^* \ldots x_{k}^*)</tex> - набор значений <tex>x_i</tex>, удовлетворяющий дизъюнкт <tex>(x_1 \vee \ldots \vee x_k)</tex>, то существует такой набор значений <tex>z_{1}^* \ldots z_{k-3}^*</tex>, что каждый из <tex>k-2</tex> новых дизъюнктов также удовлетворен.
* Среди значений <tex>(x_{1}^* \ldots x_{k}^*)</tex> хотя бы одно должно равняться <tex>true</tex>. Не умаляя общности, пусть для некоторого <tex>r: 1 \le r \le k, x_r = true</tex>. Тогда, пусть <tex>z_{s}^*=true</tex> для <tex>s \ le r-2</tex> и <tex>z_{s}^*=false</tex> для <tex>s \g > r - 2</tex>
Таким образом, мы свели <tex>CNFSAT</tex> к <tex>3SAT</TEX>, следовательно <tex>3SAT \in NPH</tex>. Теорема доказана.