Изменения
Нет описания правки
|definition=условие Липшица: <br><tex>\left | f(x,\bar{y}) - f(x, \bar{\bar{y}}) \right | \leq l \left | \bar{\bar{y}} - \bar{y} \right |, \:\: \forall (x,\bar{y}), (x,\bar{\bar{y}}) \in D</tex> для некоторой константы <tex>l > 0</tex>}}
Очевидно, условие Липшица выполняется при условии <tex>\left | \frac{\partial f}{\partial y} \right | \in C(D)</tex>.
{{Теорема Пикара
|statement=Пусть <tex>f(x,y)</tex> удовлетворяет условию Липшица и <tex>f(x,y) \in C(D)</tex>, тогда существует единственное решение задачи Коши
<tex>y=y(x), \:\: y \in C(\left | x-x_{0} \right | \leqslant h)</tex> где <tex>h = min(a, \frac{b}{M})</tex>
|proof=Мамой клянусь.}}