Изменения
→Уравнение, приводящееся к уравнениию в полных дифференциалах
<b>Решение:</b> <tex>u(x, y) = \int_{x_{0}}^{x}M(x, y)dx + \int_{y_{0}}^{y}N(x_{0}, y)dy = C \: - </tex> Общее решение.
==Уравнение, приводящееся к уравнениию уравнению в полных дифференциалах==
в условиях предыдущего определения, но <tex>\frac{\partial M}{\partial y} \not\equiv \frac{\partial N}{\partial x}</tex>. Домножим (6) на <tex>\mu(x, y): \:</tex> <br> <tex>M \frac{\partial \mu}{\partial y} + \mu \frac{\partial M }{\partial y} = N \frac{\partial \mu}{\partial x} + \mu \frac{\partial N}{\partial x} \: \Rightarrow \: M \frac{\partial \mu}{\partial y} - N \frac{\partial \mu}{\partial x} = \mu (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}) \: (*)</tex> <br>
{{Утверждение|statement= Пусть <tex>\exists \omega (x, y) \in C'(G): \:\:</tex> <tex dpi = "165"> \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{ N \frac{\partial \omega}{\partial x} - M \frac{\partial \omega}{\partial y}} = \psi(\omega) \: \Rightarrow \mu = e^{\int \psi(\omega)d\omega}</tex>|
proof= Пусть <tex dpi = "145">\mu = h(\omega) \: \Rightarrow \: M \frac{dh}{d\omega}\frac{\partial \omega}{\partial y} - N \frac{dh}{d\omega}\frac{\partial \omega}{\partial x} = h(\omega)(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y})</tex> <br><br>перегреппируемперегруппируем: <tex dpi = "165">\frac{dh}{d\omega} = h(\omega)\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y})}{M\frac{\partial \omega}{\partial y} - N \frac{\partial \omega}{\partial x}} \: \Rightarrow</tex><br><tex dpi = "145">\frac{dh}{d\omega} = h(\omega)\psi(\omega)</tex>
<tex dpi = "145">\mu(x, y) = h(\omega) = e^{\int\psi(\omega)d\omega}</tex>}}
только как решать все равно не понятно.<br>