Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2015 осень

2619 байт добавлено, 21:11, 14 декабря 2015
Нет описания правки
# Сочетание с повторениями - это способ выбрать из $n$ элементов $k$, причем один элемент можно выбирать несколько раз. Порядок не важен. Чему равно число сочетаний с повторениями из $n$ по $k$?
# Размещение с повторениями - это способ выбрать из $n$ элементов $k$, причем один элемент можно выбирать несколько раз. Порядок выбора важен. Чему равно число размещений с повторениями из $n$ по $k$?
# Выведите рекуррентную формулу для числа разбиений числа $n$ на нечетные слагаемые
# Выведите рекуррентную формулу для числа разбиений числа $n$ на нечетное число слагаемых
# Выведите рекуррентную формулу для числа разбиений числа $n$ на различные слагаемые
# Предложите алгоритм получения по перестановке ее таблицы инверсий за $O(n \log n)$.
# Предложите алгоритм получения перестановке по ее таблице инверсий за $O(n^2)$. Отмечайте это задание только если не решили следующее.
# Предложите алгоритм получения перестановки по ее таблице инверсий за $O(n \log n)$.
# Чему равно число перестановок с заданным циклическим классом?
# Степенью перестановки $\pi$ называется минимальное $k$, такое что $\pi^k=i$, где $i$ - тождественная перестановка. Как связана степень перестановки с ее циклическим классом?
# Предложите алгоритм поиска перестановки из $n$ элементов с максимальной степенью за $O(n^3)$.
# Рассмотрим коды Грея для перестановок и коды Грея для их таблиц инверсий. Есть ли между ними связь?
# Докажите, что числа Стирлинга 1 рода образуют матрицу переходов в линейном пространстве полиномов базиса возрастающих факториальных степеней к базису обычных степеней
# Докажите, что числа Стирлинга 2 рода образуют матрицу переходов в линейном пространстве полиномов от базиса обычных степеней к базису убывающих факториальных степеней
# Укажите способ подсчитать число разбиений заданного $n$-элементного множества на $k$ упорядоченных непустых подмножеств
Анонимный участник

Навигация