Изменения
→Многочлен Татта полного графа
{{Определение
|definition=
Обозначим за <tex> S_n </tex> множество остовных деревьев <tex> T </tex> графа <tex> G </tex>. Будем говорить, что ребро <tex> p \in T</tex> '''внутренне активно''' (англ. ''internally active'') в <tex> T </tex>, если <tex> p \prec q </tex> для всех <tex> q \in E \backslash t </tex>, таких что <tex> T \backslash p \cup {q} \in S_n</tex>. Аналогичным образом, будем говорить, что ребро <tex> p \in T</tex> '''внешне активно''' (англ. ''externally active'') в <tex> T </tex>, если <tex> p \prec q </tex> для всех <tex> q \in E \backslash T </tex>, таких что <tex> T \backslash q \cup {p} \in S_n</tex>. Величиной внутренней (внешней) активности будем называть число внутренне (внешне) активных элементов в <tex> T </tex>; эти величины будем обозначать <tex> i(T) </tex> и <tex> e(T) </tex> соответственно.
}}