<tex>\Leftarrow</tex>
1) # Вершины <tex>s</tex> и <tex>t</tex> лежат в одном и том же дереве поиска в глубину на третьем этапе алгоритма. Значит, что они обе достижимы из корня <tex>r</tex> этого дерева. # Вершина <tex>r</tex> была рассмотрена вторым обходом в глубину раньше, чем <tex>s</tex> и <tex>t</tex>, значит время выхода из нее при первом обходе в глубину больше, чем время выхода из вершин <tex>s</tex> и <tex>t</tex>. Из этого мы получаем 2 случая:##Обе эти вершины были достижимы из <tex>r</tex> в инвертированном графе. А это означает взаимную достижимость вершин <tex>s</tex> и <tex>r</tex> и взаимную достижимость вершин <tex>r</tex> и <tex>t</tex>. А складывая пути мы получаем взаимную достижимость вершин <tex>s</tex> и <tex>t</tex>.##Хотя бы одна не достижима из <tex>r</tex> в инвертированном графе, например <tex>t</tex>. Значит и <tex>r</tex> была не достижима из <tex>t</tex> в инвертированном графе, так как время выхода <tex>r</tex> - больше . Значит между этими вершинами нет пути, но последнего быть не может, потому что <tex>t</tex> была достижима из <tex>r</tex> по пункту 1).
2) Вершина <tex>r</tex> была рассмотрена вторым обходом в глубину раньшеЗначит, чем <tex>s</tex> и <tex>t</tex>, значит время выхода из нее при первом обходе в глубину больше, чем время выхода из вершин <tex>s</tex> и <tex>t</tex>. Из этого мы получаем случая 2 случая: а) Обе эти вершины были достижимы из <tex>r</tex> в инвертированном графе. А это означает взаимную достижимость вершин <tex>s</tex> и <tex>r</tex> и взаимную достижимость вершин <tex>r</tex> и <tex>t</tex>. А складывая пути мы получаем взаимную достижимость вершин <tex>s</tex> и <tex>t</tex>. б) Хотя бы одна не достижима из <tex>r</tex> в инвертированном графе, например <tex>t</tex>. Значит и <tex>r</tex> была не достижима из <tex>t</tex> в инвертированном графе, так как время выхода <tex>r</tex> - больше . Значит между этими вершинами нет пути, но последнего быть не может, потому что <tex>t</tex> была достижима из <tex>r</tex> по пункту 1). Значит, из случая а) и не существования случая б) 2.2 получаем, что вершины <tex>s</tex> и <tex>t</tex> взаимно достижимы в обоих графах.
}}