Изменения
Ксе к
,Нет описания правки
''' О ЗАДАЧЕ '''
Представим банку, заполненную хим акт жидкостью, а может твердое тело, перемешаны хим реагенты, которые способны взаимод друг с другом. Одну из стенок банки начинают прогревать (поддерживая температуру стенки <tex>T_w</tex>). При нагревании происходит хим реакция. Эта хим реакция удовлетворяет 2 свойствам:
# скорость реакции "сильно" увеличивается с температурой
<br>, где K - константа скорости реакции. К, а - порядок реакции, Е - энергия активациии - константы
Что такое переход из вещ вещества А в В (РИСУНКО РИСУНОК енергия связи, барьер.) То есть чтобы проихощла рекция произошла реакция необходимо преодолеть молек молекулярный барьер. Экспонента формуле показывает, какая часть модекул больше барьера. Надо решить ту систему уравнений.
<tex>x|_{z = 0} = 0</tex>
<tex>T|_{z = 0} = T_w</tex> - темпер температура стенки
<tex>\frac {\partial x} {\partial z} |_{z = l} = 0, \frac {\partial T} {\partial z} |_{z = l} = 0</tex> . На самом деле , все это не важно услоивя условия на дальнем конце, пока фронт не подойдет к ней.
* Начальные условия:
<tex>x|_{t = 0} = \left\{ \begin{matrix} 1, z \ne 0 \\
T_w, z = 0\end{matrix} \right.</tex>
<tex>U \sim [\frac{2 K \lambda}{Q \rho \triangle T = T_m } (\frac{R T_{m^2}}{E})^2 e^{- T_0 = \frac{QE}{R T_m}}] ^ {C1/2}</tex><br>, где<br>К - конст реакции, <br><tex>\triangle T</tex> - насколько среда прогревается<br><tex>\lambda</tex> - коэффициент теплопроводности<br>Q - тепловой эффект реакции
<br><tex>\triangle T = T_m - ьемпература T_0 = \frac{Q}{C}</tex><br> T_m - температура адиабатического прохожденя реакции, то есть насколько прогрелась
По структуре фронта (ГРАФИКИ структура фронта)
есть сравнительно широкая зона подогрева <tex>\delta_t</tex> и сравнительно узкая зна зона реакции <tex>\delta_r</tex>. То есть температура увелич в сравнительно широкой облачти, а реакция контертруется (?) в более узкой зоне.
<tex>\delta_T \sim \frac {\varkappa}{U} = \frac{\lambda}{p c \rho С U}</tex>, <tex>\varkappa</tex>- коэфф темепературопроводности
диффузионный масштаб (может не совпадать с тепловым)
<tex>\delta_D \sim \frac {D/} {U } </tex> , где D - коэфф диффузии
<tex>\delta_r \sim \delta_T \beta</tex> ??<br>, где <tex>\beta =\frac{R T_m}{E} \ll 1</tex> - условние "сильной " зависимости скор реакц от температуры
<tex>\beta gamma =\frac{R T_m^2}{E\triangle T} = \frac{R T_m^2}{E (T_m - T_0)} = \frac{R T_m^2 C}{E Q} \ll 1</tex> - условние условие "сильной " зависимости скор реакц от темпертурыэкзотермичности реакии
# на <tex>\delta_r</tex> укладывалось хотя юы несколько пространственных шагов ,
# <tex> \triangle z\lesssim \delta_r</tex>,
# <tex>\delta_T \ll l </tex> l - разсер области, то еть чтоб фрон есть чтобы фронт поместился.
''' Задача ''' Предже всего , получить обычный фронт, потом варьируя параметры залезть за критичсекие режимы. Что способствует переходу за крит режимы: D↓, K↑, и одновременно (K↑, Е↑ таким образом что <tex>K e^{-\frac{E}{l t m}} = const </tex>- может привести к релаксационным колебаниям)
(*)Для желающих 2мерную задачу.
<tex>E = 8 \cdot 10^4 </tex> Дж/Моль энергия активации
<tex>R = 8.314 </tex> Дж/(Моль * К)унив газовая постоянная
<tex>a = 0..2</tex> - порядок реакции. лучше начинать с 1
<tex>\lambda = 1.13 </tex> Дж/(м * с * К) теплопроводность
<ref>
У меня немного по-другому <tex>\lambda = 0.13 <\tex> Дж/(м * с * К)
</ref>
<tex>D \sim 8 \cdot 10^{-12}</tex> м^2/c коэффиц диффуздиффузии. Диффузия в жидк и твердых телах очень маленькая. для Для начала не реальную юрать брать D, а звять взять не физ значение а такое, что число Льюиса <tex>L_e = \frac{D}{\varkappa} = \frac{D \rho C} {\lambda} = 1</tex>. Это даст ситуацию подобия уравнений переноса тепла и переноса массы.
"Препроцессинг" - интерактивный ввод параметров физических и вычислительных(шаги колво кол-во шагов...)
"Процессор" - солвер