Изменения
Нет описания правки
Если <tex>f\left({\lambda}_k\right) \le f\left({\mu}_k\right)</tex>, то выполнив аналогичные преобразования, получим <tex>{\lambda}_{k+1} = {\lambda}_k</tex>. Таким образом, в обоих случаях на <tex>k + 1</tex>-й итерации требуется только одно вычисление функции.
В отличие от метода [[Поиск с помощью золотого сечения|золотого сечения]] в методе Фибоначчи требуется, чтобы общее число вычислений <tex>n</tex> (или коэффициент сокращения исходного интервала) было задано заранее. Это объясняется тем, что точки, в которых производятся вычисления, зависят от <tex>n</tex>. Длина интервала неопределенности на <tex>k</tex>-той итерации сжимается с коэффициентом <tex>\dfrac{F_{n-k}}{F_{n-k+1}}</tex>. Следовательно, после <tex> \left(n-1\right)</tex> итерации, где <tex>n</tex> {{---}} заданное общее число вычислений функции <tex>f\left(x\right)</tex>, длина интервала неопределенности сократится от <tex>\left(b_1 - a_1\right)</tex> до <tex>\dfrac{b_1 - a_1}{F_n}</tex>.
==Алгоритм==
'''Предварительный этап.'''
Выбрать допустимую конечную длину интервала неопределенности <tex>l > 0</tex> и константу различимости <tex>{\epsilon}</tex>. Пусть задан начальный интервал неопределенности <tex>\left(b_1 - a_1\right)</tex>. Выбрать общее число вычислений функции <tex>n</tex> так, чтобы <tex>F_n > \dfrac{b_1 - a_1}{l}</tex>. Положить <tex>{\lambda}_1 = a_1 + \dfrac{F_{n-2}}{F_n}*\left(b_1 - a_1\right)</tex>, <tex>{\mu}_1 = a_1 + \dfrac{F_{n-1}}{F_n}*\left(b_1 - a_1\right)</tex>.