Изменения

Перейти к: навигация, поиск
Нет описания правки
=== Построение МП-автомата по заданной КС-грамматике ===
{{Теорема
|id = th1
|statement = Класс [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора | контекстно-свободных языков]] (<tex>(\mathrm{CFG})</tex>) является подмножеством класса языков, задаваемых [[Автоматы с магазинной памятью | автоматами с магазинной памятью]] (<tex>(\mathrm{PDA})</tex>), то есть по любой КС-грамматике можно построить МП-автомат, задающий тот же язык, что и исходная грамматика.
|proof =
Пусть дана КС-грамматика <tex>\Gamma =\langle \Sigma, N, S, P\rangle</tex>. Поскольку классы языков, допускаемых МП-автоматами по допускающему состоянию и по пустому стеку, [[МП-автоматы, допуск по пустому стеку и по допускающему состоянию, эквивалентность | совпадают]], достаточно построить автомат с допуском по пустому стеку.
;Пусть <tex>S \Rightarrow^* w</tex>.: Рассмотрим [[ Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора | левосторонний вывод ]] <tex>S = \gamma_0 \Rightarrow \gamma_1 \Rightarrow ... \Rightarrow \gamma_n=w</tex>. Обозначим как <tex>v_i</tex> наибольший префикс <tex>\gamma_i</tex>, состоящий только из терминалов, а <tex>\alpha_i</tex> {{---}} остаток <tex>\gamma_i</tex>, то есть <tex>\gamma_i = v_i\alpha_i</tex>, причём <tex>v_i \in \Sigma^*</tex>, а <tex>\alpha_i</tex> начинается с нетерминала (либо пустая). С помощью индукции по <tex>i</tex> докажем, что <tex>(q, w, S) \vdash^* (q, x_i, \alpha_i)</tex> для <tex>i \leq n</tex>, где <tex>x_i</tex> {{---}} то, что остаётся после чтения <tex>v_i</tex>, то есть <tex>v_ix_i = w</tex>. Иными словами, переходя по автомату по символам <tex>v_i</tex>, можно оставить на стеке <tex>\alpha_i</tex>.
:* '''База (:''' <br> Пусть <tex>i = 0</tex>): . <br> В этом случае <tex>\gamma_0 = S</tex>, поэтому <tex>v_0 = \varepsilon, \alpha_0 = S, x_i = w</tex>. Очевидно, <tex>(q, w, S) \vdash^* (q, w, S)</tex>.:* '''Индукционный переход: ''' <br> Пусть <tex>(q, w, S) \vdash^* (q, x_i, \alpha_i)</tex> для <tex>i < n</tex>. <tex>\alpha_i</tex> по определению начинается с какого-то нетерминала <tex>V</tex> (если <tex>\alpha_i = \varepsilon</tex>, то получена <tex>\gamma_n</tex>, а мы предположили, что <tex>i < n</tex>), то есть <tex>\alpha_i = Vq_i</tex> Поскольку мы рассматриваем левосторонний вывод, то переход <tex>\gamma_i \Rightarrow \gamma_{i + 1}</tex> включает замену нетерминала <tex>V</tex> на какую-то цепочку <tex>\beta</tex> по правилу <tex>V \rightarrow \beta</tex>. Так как <tex>\gamma_i = v_i \alpha_i = v_i V q_i</tex>, то <tex>\gamma_{i + 1} = v_i \beta q_i = v_{i + 1} \alpha_{i + 1}</tex>. В автомате <tex>A</tex> по построению присутствует правило перехода <tex>\delta(q, \varepsilon, V) = \{(q, \beta)\}</tex>, поэтому <tex>\alpha_i</tex> на стеке можно заменить на <tex>\beta q_i</tex>. Заметим, что <tex>\beta q_i</tex> представляет собой конкатенацию нескольких терминалов из <tex>w</tex> и <tex>\alpha_{i + 1}</tex>. Считывая очередные символы строки <tex>w</tex>, будем переходить по автомату, убирая терминалы со стека, пока не встретим нетерминал. Таким образом, на стеке окажется <tex>\alpha_{i+1}</tex>. Получили, что <tex>(q, x_i, \alpha_i) \vdash^* (q, x_{i + 1}, \alpha_{i + 1})</tex>, а значит, <tex>(q, w, S) \vdash^* (q, x_{i + 1}, \alpha_{i + 1})</tex>. Индукционный переход доказан.
: Заметим, что <tex>\alpha_n = \varepsilon, v_n = w, x_n = \varepsilon</tex>, поэтому <tex>(q, w, S) \vdash^* (q, \varepsilon, \varepsilon)</tex>.
;Пусть <tex>(q, w, S) \vdash^* (q, \varepsilon, \varepsilon)</tex>.: Воспользуемся индукцией по числу переходов в автомате и докажем для любой строки <tex>x</tex> и нетерминала <tex>M \in N</tex>, что если <tex>(q, x, M) \vdash^* (q, \varepsilon, \varepsilon)</tex>, то <tex>M \Rightarrow^* x</tex>.
:* '''База (1 :''' <br> Пусть в автомате один переход): . <br> Если <tex>(q, x, M) \vdash^* (q, \varepsilon, \varepsilon)</tex>, то <tex>x = \varepsilon</tex> и в грамматике присутствует правило <tex>M \rightarrow \varepsilon</tex>, по которому выводится <tex>\varepsilon = x</tex>.:* '''Индукционный переход: ''' <br> Предположим, что автомат <tex>A</tex> совершает <tex>n</tex> шагов (<tex>n > 1</tex>). Изначально на вершине стеке находится <tex>M</tex>, поэтому первый переход совершается по какому-то правилу из первого пункта построения <tex>\delta</tex>, и на стеке оказывается последовательность из терминалов и нетерминалов <tex>Y_1 Y_2 \ldots Y_k</tex>. В процессе следующих <tex>n - 1</tex> переходов автомат прочитает строку <tex>x</tex> и поочерёдно вытолкнет со стека <tex>Y_1 Y_2 \ldots Y_k</tex>. Разобьём <tex>w</tex> на подстроки <tex>x_1 x_2 \ldots x_k</tex>, где <tex>x_1</tex> {{---}} порция входа, прочитанная до выталкивания <tex>Y_1</tex> со стека, <tex>x_2</tex> {{---}} следующая порция входа, прочитанная до выталкивания <tex>Y_2</tex> со стека и так далее. Формально можно заключить, что <tex>(q, x_i x_{i + 1} \ldots x_k, Y_i) \vdash^* (q, x_{i + 1} \ldots x_k, \varepsilon)</tex>, причём менее чем за <tex>n</tex> шагов. Если <tex>Y_i</tex> {{---}} нетерминал, то по индукционному предположению имеем, что <tex>Y_i \Rightarrow^* x_i</tex>. Если же <tex>Y_i</tex> {{---}} терминал, то должен совершаться только один переход, в котором проверяется совпадение <tex>x_i</tex> и <tex>Y_i</tex>. Значит, <tex>Y_i \Rightarrow^* x_i</tex> за 0 шагов. <br> Таким образом, получаем, что <tex>M \Rightarrow Y_1 Y_2 \ldots Y_k \Rightarrow^* x_1 x_2 \ldots x_k = x</tex>.
: Подставляя <tex>w</tex> вместо <tex>x</tex> и <tex>S</tex> вместо <tex>M</tex>, получаем, что <tex>S \Rightarrow^* w.
</tex>
}}
==== Пример ====
Поскольку доказательство теоремы конструктивно, то используя правила перехода, описанные в ней, можно преобразовать любую КС-грамматику в МП-автомат. Рассмотрим грамматику слов над алфавитом <tex>\{0, 1\}</tex>, в которых одинаковое количество нулей и единиц:
: <tex> S \rightarrow 0S1 </tex>;
[[Файл:Example1.png]]
=== Построение КС-грамматики по МП-автомату ===
{{Теорема
|id = th2
|statement = Класс языков, задаваемых автоматами с магазинной памятью (<tex>(\mathrm{PDA})</tex>), является подмножеством класса контекстно-свободных языков (<tex>(\mathrm{CFG})</tex>), то есть по любому МП-автомату можно построить КС-грамматику, задающую тот же язык, что и допускаемый автоматом.
|proof =
Пусть дан МП-автомат с допуском по пустому стеку <tex>A = \langle \Sigma, \Pi, Q, q_0 \in Q, z_0, \delta \rangle</tex>. Как отмечалось ранее, предположение о допуске по пустому стеку не умаляет общности.
;Пусть <tex>(p, w, X) \vdash^* (q, \varepsilon, \varepsilon)</tex>.: Докажем, что <tex>[pXq] \Rightarrow^* w</tex>, используя индукцию по числу переходов в автомате.
:*'''База (1 переход):'''<br> Раз Пусть выполняется только один переход, то .<br> Тогда длина <tex>w</tex> не больше единицы и <tex>(q, \varepsilon) \in \delta(p, w, X)</tex>, поэтому правило <tex>[pXq] \rightarrow w</tex> по построению должно присутствовать в <tex>P</tex>.:*'''Индукционный переход:'''<br> Предположим, что <tex>(p, w, X) \vdash^* (q, \varepsilon, \varepsilon)</tex> за <tex>n > 1</tex> шагов. Первый переход имеет вид <tex>(p, w, X) \vdash (r_0, x, \gamma_1 \gamma_2 \ldots \gamma_k) \vdash^* (q, \varepsilon, \varepsilon)</tex>, где <tex>w = ax</tex> (<tex>a</tex> {{---}} символ из <tex>\Sigma</tex> или <tex>\varepsilon</tex>). Значит, <tex>(r_0, \gamma_1 \gamma_2 \ldots \gamma_k) \in \delta(p, a, X)</tex>. По построению в грамматике должно присутствовать правило <tex>[p X r_k] \rightarrow a [r_0 \gamma_1 r_1] [r_1 \gamma_2 r_2] \ldots [r_{k - 1} \gamma_k r_k]</tex> для любой последовательности состояний <tex>[r_1, \ldots r_k]</tex>. Пусть <tex>x = w_1 w_2 \ldots w_k</tex>, где <tex>w_i</tex> {{---}} входная цепочка, которая прочитывается до удаления <tex>\gamma_i</tex> со стека, то есть найдётся такая последовательность состояний <tex>[r_1, \ldots r_k]</tex>, что <tex>(r_{i - 1}, w_i, \gamma_i) \vdash^* (r_i, \varepsilon, \varepsilon)</tex>, причём заканчивается всё в <tex>q = r_k</tex>. Заметим, что все эти выводы содержат менее <tex>n</tex> переходов, а значит, по индукционному предположению <tex>[r_{i - 1} \gamma_i r_i] \Rightarrow^* w_i</tex> для всех <tex>i</tex>. <br> Собирая вышесказанное, получаем <tex>[p X r_k] \Rightarrow a [r_0 \gamma_1 r_1] [r_1 \gamma_2 r_2] \ldots [r_{k - 1} \gamma_k r_k] \Rightarrow^* a w_1 w_2 \ldots w_k = w</tex>. Так как <tex>r_k = q</tex>, то <tex>[pXq] \Rightarrow^* w</tex>, тем самым индукционный переход доказан.
;Пусть <tex>[pXq] \Rightarrow^* w</tex>.: Докажем, что <tex>(p, w, X) \vdash^* (q, \varepsilon, \varepsilon)</tex>, используя индукцию по числу шагов в порождении.
:*'''База (1 шаг): ''' <br> Если Пусть <tex>[pXq] \Rightarrow^* w</tex> за один шаг, то .<br> Тогда в <tex>\Gamma</tex> должно быть правило вывода <tex>[pXq] \rightarrow w</tex>, а значит, в автомате должен быть переход <tex>(q, \varepsilon) \in \delta(p, w, X)</tex> и <tex>w</tex> не может иметь длину больше единицы. Таким образом, <tex>(p, w, X) \vdash^* (q, \varepsilon, \varepsilon)</tex>.:*'''Индукционный переход: ''' <br> Предположим, что <tex>[pXq] \Rightarrow^* w </tex> за <tex>n > 1</tex> шагов. По построению вывод должен иметь вид <tex>[p X r_k] \Rightarrow a [r_0 \gamma_1 r_1] [r_1 \gamma_2 r_2] \ldots [r_{k - 1} \gamma_k r_k] \Rightarrow^* w</tex>, где <tex>r_k = q</tex> и <tex>(r_0, \gamma_1 \gamma_2 \ldots \gamma_k) \in \delta(p, a, X)</tex>. Вновь представим <tex>w</tex> в виде <tex>w = a w_1 w_2 \ldots w_k</tex> так, что <tex>[r_{i - 1} \gamma_i r_i] \Rightarrow^* w_i</tex>. Так как все эти выводы содержат менее <tex>n</tex> шагов, то по индукционному предположению для всех <tex>i</tex> выполнено <tex>(r_{i - 1}, w_i, \gamma_i) \vdash^* (r_i, \varepsilon, \varepsilon)</tex>. Собирая всё вместе, получаем <tex>(r_0, w_1 w_2 \ldots w_k, \gamma_1 \gamma_2 \ldots \gamma_k) \vdash^* (r_1, w_2 w_3 \ldots w_k, \gamma_2 \gamma_3 \ldots \gamma_k) \vdash^* \ldots \vdash^* (r_k, \varepsilon, \varepsilon)</tex>. Так как <tex>(r_0, \gamma_1 \gamma_2 \ldots \gamma_k) \in \delta(p, a, X)</tex> и <tex>r_k = q</tex>, то в итоге <tex>(p, w, X) \vdash^* (q, \varepsilon, \varepsilon)</tex>.
Таким образом, мы доказали, что <tex>[pXq] \Rightarrow^* w \iff (p, w, X) \vdash^* (q, \varepsilon, \varepsilon)</tex>. Заметим, что <tex>S \Rightarrow^* w</tex> тогда и только тогда, когда найдётся <tex>p</tex>, что <tex>[q_0 z_0 p] \Rightarrow^* w</tex>. По доказанному выше это равносильно тому, что <tex>(q_0, w, z_0) \vdash^* (p, \varepsilon, \varepsilon)</tex>, то есть что <tex>A</tex> допускает <tex>w</tex> по пустому стеку. Суммируя всё вышесказанное, получаем, что построенная грамматика <tex>\Gamma</tex> порождает слово <tex>w</tex> тогда и только тогда, когда оно допускается автоматом <tex>A</tex>.
}}
==== Пример ====
Пусть у нас имеется МП-автомат <tex>A = \langle \{i,e\}, \{Z\}, \{q\}, q, Z, \delta \rangle</tex>, функция <tex>\delta</tex> задана следующим образом:
*:<tex>\delta(q, i, Z) = \{(q, ZZ)\}</tex>,*:<tex>\delta(q, e, Z) = \{(q, \varepsilon)\}</tex>.
[[Файл:Example2.png]]
Так как стековый алфавит <tex>A</tex> содержит лишь один символ и одно состояние, то в построенной грамматике будет лишь 2 нетерминала:
* <tex>S</tex> — стартовый нетерминал.
* <tex>[qZq]</tex> — единственная тройка, которую можно собрать из состояний автомата и символов стекового алфавита.
Также грамматика имеет следующие правила вывода:
* Из <tex>\delta(q,e,Z)=\{(q,\varepsilon)\}</tex> получаем правило вывода <tex>[qZq] \rightarrow e</tex>
Для удобства тройку <tex>[qZq]</tex> можно заменить символом <tex>A</tex>, в таком случае правила вывода в грамматике будут следующие:
* :<tex>S \rightarrow A</tex>;* :<tex>A \rightarrow iAA</tex>;* :<tex>A \rightarrow e</tex>.
Упростим грамматику, заменив <tex>A</tex> на <tex>S</tex> (очевидно, она не поменяется), и получим в результате <tex>\Gamma = \langle\{i,e\}, \{S\}, S, \{S \rightarrow iSS | e\}\rangle</tex>
=== Эквивалентность языков МП-автоматов и КС-языков===
{{Теорема
|about = об эквивалентности языков МП-автоматов и КС-языков
}}
=== Следствия ===
{{Утверждение
|statement = Для любого МП-автомата с допуском по пустому стеку существует эквивалентный МП-автомат с одним состоянием.
|proof = Построим КС-грамматику по данному автомату, затем по полученной грамматике построим МП-автомат, как указано выше. Заметим, что этот автомат не будет иметь <tex>\varepsilon</tex>-переходов, что и требовалось доказать.
}}
==См. также = Ссылки ===;Википедия*[https://en.wikipedia.org/wiki/Pushdown_automaton#PDA_and_context-free_languages Wikipedia — PDA and context-free languages];Другие викиконспекты
*[[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора | Контекстно-свободные грамматики]]
*[[Автоматы с магазинной памятью | Автоматы с магазинной памятью]]
=== Литература =Источники информации ==*[https://en.wikipedia.org/wiki/Pushdown_automaton#PDA_and_context-free_languages Wikipedia — PDA and context-free languages]
* Введение в теорию автоматов, языков и вычислений / Хопкрофт Д., Мотвани Р., Ульман Д. — М.:Издательский дом «Вильямс», 2002. с. 251. — ISBN 5-8459-0261-4
48
правок

Навигация