Изменения

Перейти к: навигация, поиск

Ppi1sumwu

48 байт добавлено, 09:24, 7 мая 2016
Доказательство корректности
* <tex>k</tex> {{---}} первая работа в <tex>S^*</tex>: <tex>k \notin S</tex>
Покажем, что в <tex>S^*</tex> работа <tex>k</tex> может быть заменена работой <tex>l</tex> без увеличения значения целевой функции. Рассмотрим два случая:<br>
1. # Пусть <tex>l < k</tex>.<br>#:То, что <tex>k</tex> не принадлежит множеству <tex>S</tex>, значит, что либо на некотором шаге появилась опаздывающая работа <tex>j</tex>, которая заменила <tex>k</tex>, либо работа <tex>k</tex> опаздывала и <tex>w_k</tex> было меньше <tex>\min\limits_{i \in S}w_i</tex>, и поэтому она не была добавлена. В любом случае в это время работа <tex>l</tex> уже принадлежала <tex>S</tex>. Во втором случае очевидно, что <tex>w_k \leqslant w_l</tex>. То же неравенство выполняется и в первом случае, так как на этапе замены мы выбрали <tex>k</tex>, а не <tex>l</tex>. Следовательно, мы не ухудшим целевую функцию заменой <tex>k</tex> на <tex>l</tex>.<br>2. # Пусть <tex>l > k</tex>.<br>#:Замена работы <tex>k</tex> в <tex>S^*</tex> на работу <tex>l</tex> не противоречит условию, что за все работы в этом множестве штраф налагаться не будет, так как <tex>k</tex> выполнялась в срок, а <tex>d_k \leqslant d_l</tex> и все работы выполняются одинаковое количество времени. Следовательно, <tex>l</tex> так же будет выполнена в срок. Осталось доказать, что <tex>w_k \leqslant w_l</tex>. <br>#:[[Файл:Sh.jpg|250px|thumb|right|Рис. 1. <tex>i_v</tex> превосходит <tex>i_u</tex>.]]#:Пусть работа <tex>k_{i_0} = k</tex> была заменена работой <tex>i_0</tex>, а так же <tex>k_{i_1} \ldots k_{i_r}</tex> {{---}} последовательность работ из <tex>S</tex>, каждая из которых была на некотором шаге заменена работой <tex>i_1 \ldots i_r</tex> соответственно. Тогда <tex>i_0 < i_1 < \ldots < i_r</tex>.<br>[[Файл#:Sh.jpg|250px|thumb|right|Рис. 1. <tex>i_v</tex> превосходит <tex>i_u</tex>.]]Будем говорить <tex>i_v</tex> ''превосходит'' <tex>i_u</tex>, где <tex>u < v</tex>, если <tex>k_{i_v} \leqslant i_u</tex>. Тогда <tex>w_{k_{i_v}} \geqslant w_{k_{i_u}}</tex>, так как когда мы вставляли работу <tex>i_u</tex> мы выбрали для замены <tex>k_{i_u}</tex>, то есть ее вес был минимальным среди всех работ, находившихся на тот момент в <tex>S</tex>, включая <tex>k_{i_v}</tex>. Для большей ясности на рисунке 1 показано, в каком порядке располагаются эти работы относительно друг друга согласно их номерам.<br>#:Если из последовательности <tex>i_0 < i_1 < \ldots < i_r</tex> можно выделить подпоследовательность <tex>j_0 = i_0 < j_1 < \ldots < j_s</tex> со свойствами:#:* <tex>j_{v + 1}</tex> превосходит <tex>j_v</tex>, где <tex>v \in [0 \ldots s - 1]</tex>#:* <tex>j_{s - 1} < l \leqslant j_s</tex> ,#:то <tex>w_l \geqslant w_{k_{j_s}} \geqslant \ldots \geqslant w_{k_{j_0}} = w_k</tex>, что доказывает теорему.<br>#:В противном случае найдем такую работу <tex>i_t</tex> с наименьшим <tex>t</tex>, что никакая работа <tex>i_v</tex>, где <tex>v > t</tex>, не превосходит <tex>i_t</tex>, причем <tex>i_t < l</tex>. По определению это значит, что после того, как работа <tex>i_t</tex> будет добавлена в <tex>S</tex>, ни одна работа <tex>i \leqslant i_t</tex> не будет удалена из этого множества. Так как <tex>i_t < l</tex>, то по определению <tex>l</tex> все работы, которые на момент добавления <tex>i_t</tex> находятся в <tex>S</tex>, так же должны принадлежать <tex>S^*</tex>. Покажем, что это приведет нас к противоречию.<br>#:Пусть <tex>S_t</tex> {{---}} множество <tex>S</tex> после удаления <tex>k_{i_t}</tex> и добавления <tex>i_t</tex>. Рассмотрим два случая:<br>а#::<tex>(a)</tex>. Если <tex>k^* = k_{i_t} > k</tex>, то есть <tex>d_{k^*} \geqslant d_k</tex>, то мы можем заменить <tex>k</tex> на <tex>k^*</tex> в <tex>S^*</tex>, сохранив условие, что <tex>S^*</tex> не содержит опаздывающих работ. Следовательно, множество <tex>S_t \cup \{k^*\}</tex> не содержит работ со штрафами, что противоречит построению <tex>S</tex>.б#::<tex>(b)</tex>. Пусть <tex>k^* < k</tex>. Тогда все работы из <tex>S_t \cup \{k\}</tex> могут быть выполнены в срок, так как <tex>S_t</tex> и <tex>k</tex> принадлежат <tex>S^*</tex>. Более того, все работы из множества <tex>\{j \in S_t | j < k\}</tex> могут быть выполнены без опозданий. Таким образом, мы снова приходим к тому, что множество <tex>S_t \cup \{k^*\}</tex> не содержит работ со штрафами, что является противоречием.
}}
577
правок

Навигация