Изменения

Перейти к: навигация, поиск

O2Cmax

95 байт добавлено, 20:43, 18 мая 2016
Нет описания правки
# Рассмотрим два случая:
## <tex>a_{x} > b_{y}</tex>. Будем строить расписание с двух концов:
##*Строим расписание слева: выполняем на первом станке все работы из <tex>I \setminus \{x\}</tex>, а на втором выполняем первой работу <tex>x</tex>, затем <tex>I \setminus \{x\}</tex>в том же порядке, что и на первом станке.
##*Теперь, упираясь в правую границу, равную <tex> C_{max} </tex>, можно построить расписание справа: выполняем на первом станке все работы из <tex>J</tex>, затем <tex>x</tex>, а для второго выполняем работы из <tex>J</tex>.[[Файл:Picture2.gif‎|500px|center]]
## <tex>a_{x} \leqslant b_{y}</tex>. Сводится к первому, если поменять местами станки и соответствующие списки времён выполнения, при этом надо заново выполнить пункты 1,2 и 3. При выдаче ответа меняем станки обратно местами.
Чтобы доказать корректность, надо доказать, что на каждом станке в любой момент времени выполняется не более одной работы, и что каждая работа в каждый момент времени выполняется не более, чем на одном станке.<br/>
Первое утверждение вытекает из того, что мы строили расписание, опираясь на <tex>C_{max}</tex>. Из построения <tex>C_{max} \geqslant \sum \limits_{i = 1}^{n}a_{i}, \sum \limits_{i = 1}^{n}b_{i}</tex>, следовательно на каждом станке в любой момент времени выполняется не более одной работы.<br/>
Докажем теперь второе утверждение. У нас имеется 3 три блока работ: <tex> I \setminus \{x\}, \{x\}, J</tex>.
# Для блока <tex> \{x\}</tex> это следует из того, что <tex> C_{max} \geqslant a_{x}+b_{x}</tex>, а работа <tex> x </tex> выполняется с разных концов станков. Получили, что отрезки выполнения работы <tex> x </tex> на разных станках не пересекаются.
# Покажем, что любая работа из <tex> I \setminus \{x\}</tex> начинает выполняться на втором станке позже, чем заканчивает выполняться на первом. Для этого рассмотрим сумму:<br><tex>\sum \limits_{i = 1}^k a_{i} \leqslant \sum \limits_{i = 1}^k b_{i} = \sum \limits_{i = 1}^{k - 1} b_{i} + b_{x}</tex>, где <tex>1 \dots k</tex> {{---}} это работы, выполняемые на первом станке во время данного блока.<br>Это неравенство следует из выбора <tex>I</tex> и из того, что <tex>b_{x} \geqslant a_{x} \geqslant a_{i}, \forall i \in I</tex>.<br>Получили, что каждая работа из этого блока начинает выполняться на втором станке позже, чем она заканчивается на первом.<br>
<tex>I = \varnothing </tex>
<tex>J = \varnothing </tex>
'''pair<int[n], int[n]>''' ans
<tex>C_{max} = \max \{\sum \limits_{i = 1}^{n} a_i, \ \sum \limits_{i = 1}^{n} b_i, \ \max \limits_{i = 1}^{n}\{a_i + b_{i}\}\}</tex>
'''for''' <tex>i = 1</tex> '''to''' <tex>n</tex>
От правой границы {{---}} <tex>C_{max}</tex> на первом станке расставляем расписание для <tex>\{x\}</tex>, затем для <tex>J</tex>
От правой границы {{---}} <tex>C_{max}</tex> на втором станке расставляем расписание для <tex>J</tex><br/>
'''pair<int[n], int[n]>''' ans = пара из расписания для первого станка и расписания для второго станка
'''return''' ans
'''else'''
'''pair<int[n], int[n]>''' ans = scheduling(b, a)
Меняем местами расписания для станков в ans
'''return''' ans
251
правка

Навигация