635
правок
Изменения
Нет описания правки
|proof=[[Файл:G2.png|450px|thumb|Пример дерева для алгоритма сортировки трех элементов.
<br>Внутренний узел, помеченный как <tex> i:j </tex>, указывает сравнение между <tex> a_{i} </tex> и <tex> a_{j} </tex>. Лист, помеченный перестановкой <tex> \left \langle \pi(1), \pi(2), \dots ldots , \pi(n) \right \rangle </tex>, указывает упорядочение <tex> a_{\pi(1)} \leqslant a_{\pi(2)} \leqslant \dots ldots \leqslant a_{\pi(n)} </tex>.]]
Любому алгоритму сортировки сравнениями можно сопоставить дерево. В нем узлам соответствуют операции сравнения элементов, ребрам {{---}} переходы между состояниями алгоритма, а листьям {{---}} конечные перестановки элементов (соответствующие завершению алгоритма сортировки). Необходимо доказать, что высота такого дерева для любого алгоритма сортировки сравнениями не меньше чем <tex>\Omega(n \log n)</tex>, где <tex>n</tex> {{---}} количество элементов.