Изменения

Перейти к: навигация, поиск

Гамильтоновы графы

Нет изменений в размере, 17:45, 19 июня 2016
Оптимизация решения методом динамического программирования
Это решение требует <tex>O(2^nn)</tex> памяти и <tex>O(2^nn^2)</tex> времени. Эту оценку можно улучшить, если изменить динамику следующим образом.
Пусть теперь <tex>d'[mask]</tex> хранит маску подмножества всех вершин, для которых существует гамильтонов путь в подмножестве <tex>mask</tex>, заканчивающихся в этой вершине. Другими словами, сожмем предыдущую динамику: <tex>d'[mask]</tex> будет равно <tex>\sum_{i \in [0..n-1]}\limits d[mask][i] \cdot 2 ^i </tex>. Для графа <tex>G</tex> выпишем <tex>n</tex> масок <tex>M_i</tex>, для каждой вершины задающие множество вершин, которые связаны ребром в данной вершиной. То есть <tex>M_i = \sum_{j \in [0..n-1]}\limits 2^i j \cdot ((i, j) \in E ? 1:0) </tex>.
Тогда динамика перепишется следующим образом: <br>
Анонимный участник

Навигация