Изменения

Перейти к: навигация, поиск

Контексты и синтаксические моноиды

3 байта добавлено, 12:59, 3 октября 2016
Правый контекст
<tex>\Leftarrow</tex>
<br/>
Пусть множество правых контекстов языка конечно. Построим распознающий его автомат. Состояния автомата будут соответствовать различным правым контекстам. Таким образом, каждая вершина автомата соответствует множеству допустимых «продолжений» считанного на данный момент слова. Переход по некоторому символу из одного состояния в другое осуществляется, если контекст, соответствующий первому состоянию, содержит все элементы, которые получаются приписыванием этого символа в начало элементам контекста, соответствующего второму. Вершина, соответствующая контексту пустого слова, является стартовой (<tex>C_L^R(\varepsilon) = L</tex>). Вершины, контексты которых содержат <tex>\varepsilon</tex>, должны быть допускающими.
Покажем что полученный автомат допускает в точности указанный язык. Выпишем свойства, которые мы стремились удовлетворить при построении:
<tex>\Rightarrow</tex>
<br/>
Пусть <tex>L</tex> {{---}} регулярный. В таком случае существует автомат <tex>\mathcal{A}</tex>, распознающий его. Рассмотрим произвольное слово <tex>y</tex>. Положим <tex>u</tex> {{---}} такое состояние <tex>\mathcal{A}</tex>, в которое можно перейти из начального по слову <tex>y</tex>. Тогда <tex>C_L^R(y)</tex> совпадает с множеством слов, по которым из состояния <tex>u</tex> можно попасть в допускающее. Причем если по какому-то слову <tex>z</tex> тоже можно перейти из начального состояния в <tex>u</tex>, то <tex>C_L^R(y) = C_L^R(z)</tex>. Наоборот, если <tex>C_L^R(y) = C_L^R(z)</tex>, то состояния, в которые можно перейти по словам <tex>y</tex> и <tex>z</tex>, эквивалентны. Таким образом, можно установить взаимное соответствие между правыми контекстами и классами эквивалентности вершин автомата, которых конечное число.
}}
Анонимный участник

Навигация